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Abstract. Wireless sensor networks (WSNs) have found extensive applications across
various fields, significantly enhancing the convenience in our daily lives. Hence, an in-
creasing number of researchers are directing their attention toward the performance of
sensor nodes, with a particular emphasis on addressing the coverage challenges in WSNs.
Node coverage plays a crucial role in determining the detection performance of WSNs,
making it imperative to attain maximum coverage with a given number of sensor nodes.
This paper applies the Tumbleweed Algorithm (TA) to the coverage problem in WSNs
and validates its effectiveness through simulation experiments. The results demonstrate
its unique advantages in global search and avoiding local optima, providing a new solu-
tion for the WSN coverage problem and offering valuable references for future research
and practical applications. The TA algorithm simulates the lifecycle of tumbleweed from
seedling to mature plant and includes the concept of growth cycles. This paper compares
the TA algorithm with PSO, GWO, DE, BOA, SCA, and AOA, setting different numbers
of wireless sensor nodes and varying sensing radii for the experiments. The experimental
results show that the TA algorithm significantly improves coverage rates under various
configurations and consistently outperforms other commonly used algorithms.
Keywords:Tumbleweed algorithm, Meta-heuristic evolutionary algorithm, Wireless sen-
sor networks

1. Introduction. The random distribution of a large number of wireless sensor nodes
constitutes a wireless sensor networks (WSNs), through which it is able to collect necessary
information from the surrounding environment [1]. As the applications of WSNs continue
to expand, the network coverage problem has attracted much attention. However, there is
a challenge of having a large number of sensor nodes with low network coverage in practical
applications [2] [3]. Network coverage refers to the ability to recognize the actual situation
of the monitored objects to a certain extent, which aims to ensure sensing services while
expanding the network coverage as much as possible. Enhancing the coverage of WSNs
is a crucial objective.

The importance of network coverage is not only limited to ensuring perceptual services,
but also involves practical applications and the enhancement of social well-being in a
number of fields. Enhancing the coverage effectiveness of WSNs in agriculture enables
real-time monitoring of crop growth. Moreover, leveraging sensor data for precise agri-
cultural management allows for the optimization of the production process, ultimately
leading to improvements in agricultural yield and quality. This not only helps farmers
reduce costs but also promotes the development of sustainable agriculture. In terms of
environmental monitoring, expanding network coverage allows us to more comprehen-
sively monitor changes in atmospheric composition, which not only enables us to identify
sources of air pollution in a timely manner, but also helps us to formulate more effective
environmental protection policies. WSNs enable real-time monitoring of urban air quality,
contributing to the enhancement of residents’ living environments. In the medical field,
by placing sensors on patients, the expansion of network coverage enables doctors to ac-
cess patients’ physiological parameters and health status in a more timely manner. This
not only improves the efficiency of medical services, but also provides patients with more
comprehensive and personalized medical care. Therefore, the continuous expansion of
network coverage has far-reaching implications for promoting scientific and technological
innovation, enhancing social productivity, and improving people’s quality of life.

To cope with complex problems for which it is difficult to find an exact solution in
a reasonable amount of time, we often resort to meta-heuristic algorithms. These algo-
rithms are inspired by observations of nature, biology, physics, and other fields, as well
as heuristics for solving complex problems. These include Particle Swarm Optimization
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(PSO) [4] [5], Simulated Annealing (SA) [6], Genetic Algorithm (GA) [7], Whale Opti-
mization Algorithm (WOA) [8] [9] [10], Grey Wolf Optimization (GWO) [11] [12], Cat
Swarm Optimization (CSO) [13] [14], Differential Evolution (DE) [15] [16], Ant Colony
Optimization (ACO) [17] and Phasmatodea Population Evolution Algorithm [18]. These
are classical meta-heuristic algorithms that provide flexible and effective solutions to com-
plex problems by combining different heuristic principles.

Additionally, there have been notable advancements in the study of new metaheuristic
algorithms, with the Golden Eagle Optimizer (GEO) standing out as an excellent example
[19] [20] [21]. GEO is mainly inspired by the behavior of golden eagles that adjust their
speed at different stages of the spiral trajectory in order to hunt. In the first stage of
hunting, they prefer to roam around in search of prey, while in the final stage, they then
begin to attack. In comparison with several other algorithms, it is evident that GEO
excels in approximating the true optimal solution. The algorithm provides an effective
and unique approach to solving the problem by simulating the behavior of golden eagles
in different stages and flexibly adjusting the speed.

Another noteworthy algorithm is Fish Migration Optimization (FMO), which draws
inspiration from fish migration patterns. FMO integrates migration and swimming models
into the optimization process. In a related study [22], the FMO algorithm was further
explored and applied to a Proportional Integral Derivative (PID) controller. Through
experiments, it can be seen that the optimized FMO algorithm tuned PID controller is
more robust and has superior performance compared to other comparative algorithms.

The meta-heuristic algorithm has several significant advantages in problem-solving.
First of all, it is a versatile method that can flexibly cope with a variety of different types
of problems, including combinatorial optimization and constrained optimization. Its flex-
ibility is manifested in the algorithm’s ability to adapt to different problem scenarios by
adjusting parameters or combining different heuristic principles, making it more adaptable
in dealing with problems of various complexities and structures. Secondly, meta-heuristic
algorithms usually have strong global search capability and have the ability to find poten-
tial global optimal solutions in a huge search space. This property is crucial for complex
problems that have multiple local optimal solutions, ensuring that the algorithms are able
to search for solutions towards the global optimum rather than just falling into a local
optimum.

These algorithms have been utilized for solving optimization problems across various
domains due to their considerable benefits. For example, in the fields of image processing
[23] [24] [25], routing optimization [26] [27], sensor network deployment [28], logistics path
planning [29], and portfolio management [30]. These application areas are only a part
of the wide range of applications of meta-heuristic algorithms, and their flexibility and
applicability make such algorithms highly favored for solving real-world problems [31].
Therefore, the continuous development and innovation of these algorithms can provide
richer solutions for WSNs application areas and drive the continuous progress of WSNs
technology [32] [33].

This paper successfully applies the Tumbleweed Algorithm (TA) [34] [35] to the cov-
erage problem in WSNs. The coverage problem in WSNs is a complex and challenging
optimization issue involving effective deployment of sensor nodes and maximizing cover-
age range. By introducing the TA algorithm into the optimization of WSNs, this paper
provides a novel solution to the coverage problem and validates its effectiveness through
simulation experiments. Through these experiments, the paper comprehensively evaluates
the performance of the TA algorithm under different configurations, further demonstrating
its advantages in solving the WSN coverage problem. The experimental results indicate
that by adjusting the number of sensor nodes and the sensing radius, the TA algorithm is



Optimizing Coverage in Wireless Sensor Networks Using the Tumbleweed Algorithm 253

capable of maintaining extensive coverage across different scenarios, showcasing its adapt-
ability and robustness. The TA algorithm excels in improving coverage rates, significantly
outperforming other commonly used optimization algorithms such as PSO, GWO, DE,
Butterfly Optimization Algorithm (BOA) [36], Sine Cosine Algorithm (SCA) [37], and
Archimedes Optimization Algorithm (AOA) [38].

Tumbleweed, a common plant in the desert, grows similarly to other plants in the
seedling stage. However, when faced with drought, it employs a unique survival strat-
egy – rolling up its roots to form a ball and tumbling with the wind, thus dispersing its
seeds. This distinctive behavior serves as inspiration for the TA algorithm. Upon discov-
ering a favorable environment, the tumbleweed will retreat into the earth to assimilate
moisture, showcasing resilient vitality. The TA algorithm emulates two pivotal phases
of tumbleweed: the growth stage, spanning from seedling to adulthood, and the seed
propagation stage occurring post-establishment of the seedling. In [39], the TA algorithm
was optimized and produced superior results when applied to the problem of vehicle path
planning. Therefore, the TA algorithm will provide a novel and effective optimization
solution for the coverage problem of WSNs.

The subsequent sections of the paper are outlined as follows: Section 2 describes the
fundamentals of the TA algorithm and the problems associated with WSNs coverage.
Section 3 compares and analyzes the experimental results of the algorithm. Finally, the
full paper is summarized and future work is discussed in Section 4.

2. Realted work.

2.1. Tumbleweed Algorithm. In diverse spatial areas, the TA algorithm encompasses
n scattered tumbleweeds, with each seedling being denoted by an expression Xi(i =
1, 2, ..., n). Within this population, there exists a single most vigorously growing seedling,
which is denoted by Gbest. This specific seedling harbors the potential to mature into a
fully developed tumbleweed, dispersing its seeds in the process. The subsequent passage
provides an in-depth explanation of the two fundamental stages of the TA algorithm.

In the first phase, the TA algorithm focuses on individual growth and optimization.
During this phase, the development of tumbleweed seedlings is influenced by the intricacy
of the surrounding environment. We posit that environmental influence primarily stems
from two aspects. Firstly, it involves the impact of robust seedlings on the surrounding
seedlings, denoted as P1. Secondly, it encompasses the influence of factors such as wa-
ter, humidity, temperature, and others, represented by P2. The expressions for the two
influences P1 and P2 are as follows.

By integrating P1 and P2, the TA algorithm adapts the growth state of seedlings to
the optimization needs of the local environment by adjusting the growth state of seedlings
during the development stage. This approach of integrating influencing factors helps to
simulate the complexity of plant growth in real environments, which leads to more effective
optimization of individual growth.

P1 = R1×
(
Gbest−X i

old

)
(1)

P2 =
R2

f(Xi
old)

sum(f(Xi
old))

+ 1
(2)

R1 = t1×
(
1− ite

max ite

)
(3)
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R1 represents the influence coefficient of a robust seedling, which is calculated by Equa-
tion (3). As the algorithm iterates continuously, the value of R1 exhibits a linear decreas-
ing trend, decreasing from 2 to 0. Here, t1 takes the fixed value of 2, max ite is the
maximum number of iterations, and ite denotes the current iteration number. On the
other hand, R2 denotes the impact of the surrounding environment, assigned a random
value ranging from 0 to 0.1. The fitness function f(Xi) is used to assess the adaptability of
the seedlings. Ultimately, the equation for updating tumbleweed is presented as follows:

X i
new = X i

old + P1 + P2 (4)

In the second stage, which is the exploration stage, the TA algorithm facilitates the
optimization process in striking a balance between local and global considerations. To
achieve this, we have incorporated the idea of a growth cycle, enabling transitions between
stages based on assessments of growth generations. For instance, setting a growth cycle
of 50 generations implies that seedling development and seed reproduction each occupy
half of the growth cycle. This is analogous to tumbleweed’s skillful transition between
adapting to drought and finding a suitable environment. The renewal of tumbleweed
during the seed reproduction phase can be represented by the following equation.

X i
new = Gbest+ Vi ×

ite

max ite
(5)

where Vi follows a uniform distribution with values in the interval [lb, ub]. Algorithm 1 is
the pseudo-code of the TA algorithm.

Algorithm 1 Tumbleweed Algorithm.

Input: Number of iterations (max ite), dimensions (Dim), growth cycle (gc), the size of
a population (Np)

Output: The optimal solution produced by each iteration (best fit) and (Gbest).
1: Initialize the number of groups
2: for ite = 1 : max ite do
3: Calculate the fitness value for each population;
4: Update the global optimal individual and its fitness value (f(Gbest));
5: if mod(ite, gc) < gc/2 then
6: Update P1 using Equation (1);
7: Update P2 using Equation (2);
8: Update R1 using Equation (3);
9: Update Xnew using Equation (4);

10: else
11: Update Xnew using Equation (5).
12: end if
13: end for

2.2. Coverage model for WSNs. There is a growing number of approaches in the
field dedicated to studying 2D planar area coverage. After in-depth research, it has
been recognized that many scenes and applications in the real world exhibit distinct
three-dimensional characteristics, and simple two-dimensional models struggle to capture
these complexities. This has prompted scholars to turn to the exploration and study
of 3D overlays to more comprehensively and accurately solve problems related to real-
world scenarios. The introduction of 3D coverage provides more possibilities for practical
problem solutions for WSNs, compensates for the limitations that cannot be met by 2D,
and provides more practical solutions for applications in various fields [40] [41].
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Focusing on the connectivity and k-coverage rate issues in 3D WSNs, the Reuleaux
tetrahedral model was proposed in [42] to ensure that k-coverage is achieved in the 3D
domain, thus increasing the lifetime of the entire network. Another innovative proposal
is presented in [43], introducing a new coverage model known as surface coverage. In
this model, studied on complex surfaces in 3D, sensors are exclusively deployed on in-
tricate surfaces to enhance the accuracy of monitoring targets of interest. The focus of
the research in [44] is the deployment of sensors in 3D terrain. It determines the opti-
mal location of the sensors by employing a multi-objective genetic algorithm, where the
mutation operator is based on the wavelet transform. In addition, by calculating the
minimum spanning tree of the network, not only the minimum path loss value of the
network is determined, but also the maximum coverage gain is achieved. This compre-
hensive research approach not only helps to optimize the deployment of sensors, but also
achieves significant progress in terms of network performance and efficiency. In [45], a
probabilistic coverage model based on Digital Elevation Model data is proposed, consid-
ering the impact of signal attenuation and terrain obstruction on coverage effectiveness.
Furthermore, they utilized a greedy algorithm based on grid scanning for deploying nodes,
effectively increasing coverage rates and reducing deployment costs. In [46], a 3D terrain
sensor deployment algorithm based on vertex coloring is proposed to determine sensor
requirements and their optimal positions. The study also employs a breadth-first search
algorithm to assess the connectivity quality of sensors in the network. Findings reveal
that this algorithm ensures efficient coverage and connectivity when compared to current
methods.

This paper primarily aims to address the difficulties encountered in covering three-
dimensional areas using a fixed number of nodes. To model the coverage problem more
realistically, we arrange these nodes on a 3D terrain, which is shown in Figure 1. The
most widely used perception models in WSNs include the Boolean perception model and
the probabilistic perception model [47] [48]. We adopt the Boolean perception model, also
known as the binary perception model. In Figure 2, the circular point S represents the
sensor node. We define a circular area centered at S, where r indicates the perceptual
radius of the sensor node S. This area represents the sensor node’s sensing range. Let
k be the monitoring target, if target k falls within this circular region, it is regarded as
being covered by sensor node S.

Within the monitoring area, N sensor nodes are distributed, and we represent one of
them as Si, with 3D coordinates (xsi, ysi, zsi). Correspondingly, the coordinates of the
detection target k are (xk, yk, zk), and the distance D between them can be calculated
by applying Equation (6). The Los algorithm is used to check for obstacles, ensuring no
barriers exist between sensor node S and detection target k. Equation (7) is then utilized
to determine if target k is within the coverage of sensor node S. A result of 1 indicates
that the target k is within the sensing range, while a result of 0 signifies that the target
is not within this range.

D =

√
(xsi − xk)

2 + (ysi − yk)
2 + (zsi − zk)

2 (6)

K(Si, k) =

{
1, D < r & ifLOS,

0, otherwise
(7)

Assuming the discretization of the monitoring area into M spatial points, by solving
Equation (8), we are able to determine the coverage within the monitoring area. This
approach is an in-depth exploration of the geometric relationship between sensor nodes
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Figure 1. 3D model.

Figure 2. Boolean perception model.

and targets and the effect of obstacles on coverage judgments to provide a comprehensive
understanding of the coverage within the monitored area.

CR =

∑
K (Si, k)

M
(8)

3. Experimental analysis of WSNs coverage. In order to assess the TA algorithm’s
effectiveness in wireless sensor network coverage, we compared its application in a three-
dimensional scenario with PSO, GWO, DE, BOA, SCA and AOA. Table 1 outlines the
parameters for each algorithm. In a mountainous area with a size of 50*50, we carried
out random deployment of wireless sensors. To maintain experimental fairness, we stan-
dardized the population size for each algorithm to 30. Additionally, we performed 30
independent runs for each algorithm, subsequently computing the average coverage for
comprehensive analysis. This design intends to thoroughly evaluate the performance of
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the seven algorithms under identical conditions, enabling a more precise comparison of
their coverage effects.

Two test cases were carried out: one varied the size of the radius while keeping the
number of sensor nodes constant, and the other varied the number of sensor nodes while
maintaining a constant radius. During testing, the algorithm’s dimension was set to
twice the number of nodes. By conducting tests with various parameter settings, we
demonstrate the strong performance of the TA algorithm. These tests are designed to offer
a thorough understanding of the algorithm’s performance across different configurations
and highlight the flexibility and effectiveness of the TA algorithm in dealing with different
scenarios.

According to the results presented in Tables 2 and 3, we can observe that an increase
in the number of nodes results in improved coverage with a defined perceptual radius. As
shown in Tables 4, 5, 6, and 7, an increase in the radius also enhances coverage with a
defined number of nodes.

In Table 3, when the number of sensors is 30, the TA algorithm achieved a coverage
rate of 96.01%, significantly higher than other algorithms. The GWO algorithm also per-
formed well, with a coverage rate of 95.56%. In contrast, the coverage rates of the other
five algorithms (PSO, DE, BOA, SCA, and AOA) were around 94%. In Table 4, we found
that when the sensing radius is 5 and 7, the gap between the TA algorithm and other
algorithms is even more pronounced, especially compared to AOA, with a coverage differ-
ence of up to 4%. This disparity is due to the TA algorithm’s unique advantages in node
deployment and coverage optimization. By simulating the random rolling and propaga-
tion behavior of tumbleweeds, the TA algorithm more effectively optimizes node layout,
resulting in more uniform and comprehensive coverage. In contrast, other algorithms
fail to effectively balance coverage among nodes during optimization, leading to areas
with insufficient coverage or excessive overlap. Therefore, the TA algorithm demonstrates
stronger optimization capabilities for the WSN coverage problem, significantly improving
coverage rates and achieving better network performance.

The comprehensive experimental results demonstrate that the TA algorithm consis-
tently sustains high coverage levels amidst dynamic alterations in sensing radius and
the number of nodes. This observation underscores the real-time adaptability of WSNs
facilitated by the TA algorithm. Moreover, the particular superiority shown by the TA al-
gorithm when the radius is 5 and 7 further emphasizes its adaptability to a medium range
of sensing radius. This implies that the TA algorithm can provide superior performance in
practical applications when the WSNs need to monitor efficiently over a certain range. Re-
search has shown that algorithms such as PSO, GWO, DE, BOA, SCA, and AOA exhibit
varying degrees of advantages in WSN coverage optimization, but there is still room for
improvement in terms of flexibility and coverage rates. The TA algorithm demonstrates
significant adaptability under different node counts and radius settings, maintaining high
coverage rates across multiple configurations. Compared to other algorithms, the TA al-
gorithm achieves the highest coverage rates in most cases, demonstrating its convergence
and optimization capabilities. The TA algorithm yields better results with fewer resources
and fewer sensors, particularly notable at moderate sensing radii. By optimizing node de-
ployment and communication range, the TA algorithm can reduce energy consumption,
thereby prolonging the operational lifespan of WSNs, which holds significant implications
for practical applications. All in all, the TA algorithm achieved the highest coverage in
all these cases, demonstrating its significant performance advantages in WSNs.

4. Conclusions. In this paper, the three-dimensional coverage problem of WSNs is op-
timized by the recently proposed TA algorithm. The TA algorithm focuses on simulating
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Table 1. Algorithm Parameters

Algorithms Parameter settings
PSO c1=2, w=0.9, c2=2
GWO a: decreases linearly from 2 to 0
DE cr=0.5, F=0.9
BOA probabibility switch=0.8, modular modality=0.01, power exponent=0.1
SCA a=2
AOA C1=2, C2=6, C3=1, C4=2

Table 2. Results for different number of nodes when radius = 6

Number of sensors TA PSO GWO DE BOA SCA AOA
30 63.75% 60.68% 61.03% 60.98% 61.09% 60.31% 60.41%
35 69.02% 66.22% 66.52% 66.08% 65.89% 66.08% 65.55%
40 72.78% 70.67% 71.25% 70.70% 70.35% 70.40% 70.55%
45 77.18% 74.85% 74.44% 74.56% 74.76% 74.40% 74.42%
50 80.39% 77.87% 78.07% 77.95% 78.36% 77.66% 77.83%
55 83.35% 80.53% 81.02% 81.20% 81.08% 81.05% 80.92%

Table 3. Results for different number of nodes when radius = 10

Number of sensors TA PSO GWO DE BOA SCA AOA
30 96.01% 94.13% 95.56% 94.44% 94.35% 94.19% 94.11%
35 97.49% 96.19% 96.81% 96.85% 96.07% 96.43% 96.10%
40 98.41% 97.50% 98.11% 98.03% 97.55% 97.65% 97.50%
45 99.05% 98.39% 98.59% 98.64% 98.40% 98.40% 98.46%
50 99.46% 98.83% 99.12% 99.23% 99.01% 99.00% 98.74%
55 99.68% 99.13% 99.47% 99.53% 99.32% 99.35% 99.23%

Table 4. Results for Different Radii when Number of Nodes = 30

Number of radius TA PSO GWO DE BOA SCA AOA
3 15.51% 14.88% 14.85% 14.77% 14.87% 14.73% 14.73%
5 48.14% 46.13% 45.80% 45.90% 46.11% 45.59% 45.42%
7 76.31% 73.39% 74.16% 73.60% 73.34% 73.12% 72.62%

Table 5. Results for Different Radii when Number of Nodes = 35

Number of radius TA PSO GWO DE BOA SCA AOA
3 17.65% 17.01% 16.93% 16.98% 17.20% 17.02% 16.97%
5 53.29% 51.07% 50.46% 50.93% 51.31% 50.72% 50.42%
7 80.97% 78.15% 78.55% 78.03% 78.47% 77.92% 78.18%

Table 6. Results for Different Radii when Number of Nodes =40

Number of radius TA PSO GWO DE BOA SCA AOA
3 19.89% 19.07% 19.01% 18.92% 19.23% 19.13% 19.03%
5 57.64% 55.26% 55.09% 55.12% 55.42% 55.26% 55.18%
7 84.61% 82.23% 82.53% 82.68% 82.29% 82.46% 81.66%
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Table 7. Results for Different Radii when Number of Nodes = 45

Number of radius TA PSO GWO DE BOA SCA AOA
3 21.99% 21.09% 21.15% 21.06% 21.16% 21.05% 21.25%
5 61.48% 59.59% 59.38% 59.78% 59.72% 59.30% 59.17%
7 87.18% 85.42% 85.85% 85.63% 85.33% 85.38% 85.23%

the growth of seedlings and seed reproduction in tumbleweed. It adds the idea of a growth
cycle to realize the effective combination of the two stages. With the unique features of
the TA algorithm, the coverage of WSNs is successfully improved. Comprehensive exper-
imental results comparing with PSO, GWO, DE, BOA, SCA and AOA algorithms show
that the TA algorithm achieves the highest coverage in all cases, highlighting its signif-
icant performance advantages in WSNs. The specific experimental results indicate that
regardless of changes in node quantity or sensing radius, the TA algorithm consistently
maintains high coverage rates, particularly excelling at moderate sensing radii (5 and 7).
Leveraging its ability to optimize coverage, the TA algorithm contributes to enhancing
the communication quality of the network, reducing data transmission latency and packet
loss, thereby improving the overall performance of the entire WSN.

Future work can continue to explore the functionality of TA algorithms in more com-
plex WSNs and diverse application scenarios. For instance, the potential application of
the TA algorithm in areas such as sensor deployment in urban environments, disaster
monitoring, and agricultural surveillance warrants further investigation. Introducing new
growth models and optimization strategies could further enhance the algorithm’s effi-
ciency. Furthermore, combining it with other advanced optimization algorithms, such
as hybrid algorithms or multi-objective optimization algorithms, may lead to significant
performance improvements. Considering the TA algorithm’s performance in optimiza-
tion problems, its application in other domains such as robot path planning, resource
allocation, and intelligent traffic management could also be explored. Cross-disciplinary
application research will further validate the generality and scalability of the TA algo-
rithm.
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