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Abstract. With the development of the smart grid era, the data volume of the power
system on the user side is growing rapidly, and the dependence of citizens on electric-
ity is increasing significantly. In this paper, we aim to maximize the benefits of both
supply and demand in the power system, from two aspects: improving the accuracy of
short-term load forecasting and optimizing the economic dispatch of the power system.
Firstly, based on the analysis of electricity consumption data, an improved load fore-
casting method via hybrid neural network is proposed. After determining the prediction
results of the proposed model, we solved a short-term economic dispatch problem with the
objective function of minimizing the generation cost of the power system and constraints
such as unit start-up and shutdown, to achieve optimization of economic dispatch. In this
work, an improved hybrid neural network with Firehawk Optimization (FHO) algorithm
is developed to improve the accuracy of the prediction model by optimizing hyperparam-
eters such as input data, number of hidden layer neurons, and batch size. In a series
of numerical experiments, the proposed method is compared with other well-known opti-
mization algorithms, such as Particle Swarm Optimization (PSO), Grey Wolf Optimiser
(GWO) and Wild Horse Optimisation (WHO). From the comparison results, it shows
that our method acheives better performance evaluation, and also improves the prediction
accuracy of neural network models. Based on the load forecasting results, we determine
the optimal scheduling scheme for the combination of power supply units, which mini-
mizes the load and achieves higher applicability.
Keywords: electric power system; economic dispatch problem; firehawk optimization
algorithm; supply and demand sides; electric load forecasting; smart power grids.

1. Introduction. In the face of growing electricity demand, the task of ensuring a
smooth supply in the power industry is still heavy. Meanwhile, with the development
of electric vehicles, big data and 5G [1, 2, 3, 4], the importance of electric energy in the
energy field is becoming more and more prominent. Therefore, the demand for electric
energy in people’s life is becoming more and more important. Besides, the proportion
of electric energy in the demand side is also gradually increasing, and the demand for
electric energy in the whole society is becoming larger and larger. Hence, the task of
the electric power system to guarantee the balance between supply and demand side is
still heavy [5]. For example, it was predicted that the share of electric energy in end-use
energy consumption will increase to about 35% by about Year 2035 [6].

The study of power load forecasting has a great role in the normal and economic oper-
ation of power systems [7]. The safe and stable economic operation of the power system
is not only beneficial to the development of society, but also to optimize the allocation of
resources and to relieve the increasingly tight energy pressure. One of the characteristics
of electric energy is difficult to store, so the power sector needs to have a general judgment
of the future load trend in order to make reasonable scheduling arrangements for electric
energy so that the power system’s generation, transmission, distribution, transformation
and consumption processes can achieve a dynamic balance of supply and demand [8].
Power load forecasting is a key component of the smart grid, and its accuracy is crucial
for the safe and stable operation and economic operation of the power system. In practice,
power systems aim to maximize efficiency while satisfying the interests of both supply and
demand, which is the ideal goal of power operators. Improving the accuracy of short-term
load forecasting can help grid dispatching departments make more scientific and effective
economic dispatching decisions to ensure safe and stable operation of the power system
[9, 10].

With the development of big data and cloud computing technologies, load forecasting
methods based on deep learning algorithms have been widely used [11]. Deep learning
algorithms have powerful modeling ability and adaptiveness, can automatically extract
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features from data, and can handle large-scale data. Several models in deep learning
algorithms have become the mainstream methods in load forecasting [12, 13], such as
Recurrent Neural Networks (RNN) [14] and Long Short-Term Memory (LSTM) neural
networks [15]. In the literature [16], a multiple linear regression model was applied to
classify demand-side loads into various types such as customer residential, commercial
electricity, and factory electricity, and influencing factors such as temperature were se-
lected as input parameters for model prediction, and experiments showed that the method
outperformed the traditional multiple regression model. Sina and Kaur [17] applied Sup-
port Vector Regression (SVR) model for load forecasting, combined with a spider-seeking
algorithm to find the optimal parameters of the SVR model, and the experimental results
showed that the accuracy of the SVR model combined with the optimization algorithm
was higher than that of the ordinary SVR forecasting model. Sajjad et al. [18] proposed a
combined neural network-based prediction method with a model combining both Gating
Neural Network (GRU) and Convolutional Neural Network (CNN), via extracting the
CNN features in the dataset to input into the GRU, and their results showed that the
combined model has better prediction accuracy than the simple model. In general, the
development of load forecasting technology has undergone an evolutionary process from
rules of thumb to statistical models and machine learning algorithms to neural networks
and deep learning algorithms [19, 20, 21, 22]. With the continuous progress of technol-
ogy, the accuracy and efficiency of load forecasting have been improved [10, 23], which
is of great significance for the safe and stable operation of power systems and optimal
allocation of resources.

Therefore, in this paper, a neural network algorithm is used for load prediction, but
considering that the neural network model is complex and computationally intensive in
setting and finding parameters. Meanwhile, the Fire Hawk Optimization (FHO) algorithm
is introduced and compared with commonly used optimisation algorithms, such as Particle
Swarm Optimisation (PSO), Grey Wolf Optimiser (GWO) and Wild Horse Optimisation
(WHO). In our comparison experiments, it reveals that the FHO optimization algorithm
has higher search speed and finding quality compared with other optimization algorithms.
Then a hybrid prediction model based on FHO-LSTM is constructed to improve the
accuracy of load prediction. Finally, based on the prediction results of the improved
model, a short-term economic dispatch model is developed to optimize economic dispatch
with the minimization of power system generation costs as the objective function and
constraints such as unit start-ups and shut-downs.

The main contributions of this paper are summarized in the following:

(1) In this paper, the neural network algorithm is used to predict the load, but con-
sidering that the neural network model is complex and computationally intensive
in setting and finding parameters. Hence, the FHO algorithm is introduced in this
work and compared with other commonly used optimization algorithms such as PSO,
etc. The comparison shows that the FHO optimization algorithm has a higher search
speed and finding quality than other optimization algorithms. The comparison shows
that the FHO optimization algorithm has a higher search speed and finding quality
than other optimization algorithms.

(2) This paper constructs a hybrid prediction model based on FHO-LSTM, which com-
bines the FHO optimization algorithm and neural network to improve the accuracy
of the model by optimizing the input data, the number of neurons in the hidden
layer, the batch size and other hyper-parameters. The experimental comparison
with LSTM is carried out to explore the advantages of the model.
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(3) Based on the load forecasting method and the analysis of the forecasting results
proposed in this paper, further research is carried out on the optimization of short-
term economic dispatching decisions for power systems. Combined with the load
forecasting results, an optimal dispatching model for unit combinations is proposed.
Moreover, the effectiveness of the load forecasting method proposed in this paper
in reducing the operating costs of power systems is verified through experimental
simulations.

The rest of the paper is organized as follows. In Section 2, we introduce the economic
dispatch for supply and demand sides in the electricity market. In Section 3, we propose an
improved firehawk optimization algorithm, which will be compared with three algorithms
(PSO, GWO, and WHO) through a series of numerical comparisons. Next, in Section 4,
we will present an improved hybrid prediction model via the studied FHO algorithm, and
introduce our experimental setup and numerical results. Based on the obtained forecasting
results, we will determine an optimization scheme for the economic load dispatch problem
in Section 5. Finally, in Section 6, we summarize the conclusions in this work and point
out the possible application in the future work.

2. Economic dispatch for supply and demand sides in power systems. In the
field of power system planning and operation, optimizing the economic operation of power
systems is a very important topic [10, 24, 25, 26, 27]. This helps to develop more scientif-
ically efficient economic dispatch decisions, thus ensuring the safe operation of the power
system.

As shown in Figure 1, a conceptual diagram of today’s smart grid is illustrated. A smart
grid is an intelligent energy system based on advanced information and communication
technologies. Its structure includes the following main components:

• Supply side: including various energy generation such as hydroelectric power plants,
Nuclear power plants, and distributed power sources, e.g., wind power, photovoltaic,
etc.

• Demand side: including the electricity consumption side of households, new energy
vehicles, factories, etc. for consuming electricity.

• Information side: monitoring, analysis, prediction and control of power generation,
transmission, distribution and use of the power system through technologies such as
the Internet of Things, big data and artificial intelligence.

• Energy storage side: including various energy storage devices, such as the batter-
ies and supercapacitors, for regulating the load balance of the power system and
responding to emergencies.

• Grid control system: through the market mechanism, supply and demand are regu-
lated to achieve a reasonable allocation of electricity.

These components are interconnected through information technology to achieve effi-
cient operation and management of the power system. At the same time, the smart grid
can also interact with other energy systems (such as water, gas and heat) to form a more
integrated energy system. As shown in Figure 1, it points out the position of supply and
demand sides in the smart grid, and it also shows the economic load dispatch problem in
the electricity market considered in this paper. The left side of the diagram shows the
supply side of the power system, including various energy plants. On the right side of the
diagram is the demand side of the grid, including residential electricity, factory electric-
ity, new energy vehicles, etc. With the application of electric vehicles and other facilities
to the grid system in recent years, the magnitude and scope of the load-side response
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Figure 1. The concept diagram of supply and demand sides in the electric
power system.

has been expanding, especially with the rapid growth of new energy loads, which has an
important impact on the distribution grid load.

3. An improved firehawk optimization algorithm. In this section, we are going to
introduce an improved hybrid neural network load forecasting method combined with the
FHO algorithm. In order to improve the prediction accuracy of the studied neural network,
we also compare the improved FHO algorithm with other algorithms [28]. By optimizing
the input data and optimizing hyperparameters such as hidden layer size and batch size,
the effect of improving the accuracy of the model can be achieved [29, 30, 31, 32, 33, 34].
Then, an improved model based on the combination of the FHO algorithm and neural
networks is presented, and experiments are carried out to predict the electricity load data
in areas A and B with LSTM and the corresponding improved algorithms respectively,
and experimental results are obtained.

The Fire Hawk Optimizer [35] was developed as a metaheuristic algorithm based on the
foraging behavior of brown falcons. The FHO algorithm simulates the foraging behavior
of a firehawk, considering the setting and propagation of fire and the capture of prey.
First, several candidate solutions (X) are identified as position vectors for the firehawk
and the prey. A random initialization process is used to identify the initial positions of
these vectors in the search space.
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where the position of the current best individual is represented by positionbest. Here, N is
the total number of candidate solutions in the search space; xj

i is the j-th decision variable

of the i-th candidate solution; xj
i (0) denotes the initial position of the candidate solution;

xj
i,min and xj

i,max are the minimum and maximum bounds of the j-th decision variable of
the i-th solution candidate; and rand is a uniformly distributed random number in the
range of [0, 1].

To determine the position of the firehawk in the search space, the objective function
evaluation of the candidate solutions considers the chosen optimization problem. Some
candidate solutions with better objective function values were denoted as firehawks, while
the rest of the candidate solutions were prey. The selected firehawks are used to spread
flames around the prey in the search space to make the hunt easier. In addition, the
global best solution is assumed to be the primary fire used by the firehawk first in the
search space. The mathematical representation is as follows:

PR =
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...
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, for k = 1, 2, . . . ,m, (3)

FH =
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, for p = 1, 2, . . . , n, (4)

where is the k-th prey in the search space with respect to the total number of m prey;
considering the total number of n firehawks in the search space, FHp is the p-th firehawk.

In the next stage of the studied FHO algorithm, the total distance between the firehawk
and the prey is calculated. The closest prey to each bird is determined, thus distinguishing
the effective territories of these birds. It is important to note that the prey closest to the
first firehawk with the best objective function value is determined, while the territories
of the other birds are considered through the remaining prey. Here, Dp

k is determined by
the following equation:

Dp
k =

√
(x2 − x1)

2 + (y2 − y1)
2, for p = 1, 2, . . . , n and k = 1, 2, . . . ,m, (5)
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where Dp
k is the total distance between the p-th firehawk and the k-th prey, and M is the

total number of prey in the search space. The notation n is the total number of firehawks
in the search space, (x1, y1) and (x2, y2) denote the coordinates of the firehawk and prey
in the search space, respectively.

After the procedure described above for measuring the total distance between firehawk
and prey, the territories of these birds are distinguished by the nearest prey around them.
The search process of the algorithm is configured by classifying the firehawks and the
prey. It is important to note that the firehawk with the better objective function value
for its particular territory selects the best nearest prey in the search space. The other
firehawks then complete the next closest prey in the search space.

In the next stage, the firehawks collect burning sticks from the main fire in order to set
fire in the selected area. During this stage, each bird picks up a burning stick and drops it
on its particular territory, forcing the prey to scurry away. At the same time, some birds
desire to use burning sticks from other firehawk territories; therefore, these two behaviors
can be used as a process of position updating in the main FHO search cycle, as shown in
the following equation:

FHnew
p = FHp + (r1 ×GB − r1 × FHNear), for l = 1, 2, . . . , n, (6)

where FHnew
p is the new position vector of the p-th firehawk. Here, GB is the global

optimal solution in the search space, and is considered to be the main fire. Besides,
FHNear is another firehawk in the search space, and r1 and r2 are uniformly distributed
random numbers in the range (0, 1) used to determine the movement of the firehawk
towards the main fire position and other firehawk territory positions.

Next, the movement of prey within each firehawk’s territory was considered a key aspect
of animal behaviour for the location update process. When a firehawk throws a burning
stick, the prey decides to hide, run away, or will make the mistake of running towards the
firehawk. The following equation can be used to consider these movements during the
location update process:

PRnew
q = PRp + (r3 × FHP − r4 × SPp), for p = 1, 2, . . . , n and q = 1, 2, . . . , r, (7)

where SPp is the safe location under the territory of the pth group of firehawks; r3 and
r4 are random numbers uniformly distributed in the range (0, 1) used to determine the
movement of prey towards the firehawks and the safe location.

In addition, prey may move towards other firehawk territories, and in nearby ambushes,
prey may move closer to the firehawk or even attempt to hide in safer locations outside of
the firehawk territory. The following equation can be used to consider these movements
during location updates:

PRnew
q = PRp + (r5 × FHAlter − r6 × SPp),

{
p = 1, 2, ..., n
q = 1, 2, ..., r

(8)

where FHAlter is another type of firehawk in the search space; r5 and r6 are random num-
bers uniformly distributed in the range (0, 1), identifying the movement of prey towards
other firehawks and safe places outside the territory.

Because of the reason that safe places in nature are places where most animals gather
to stay safe from danger, the computations of SPp and SP can be determined as follows:

SPp =

∑r
q=p PRq

r
, for q = 1, 2, . . . , r and p = 1, 2, . . . , n, (9)

SP =

∑m
k=1 PRk

r
for k = 1, 2, . . . ,m, (10)
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where PRk is the q-th prey surrounded by the q-th firehawk, and PRk is the k-th prey in
the search space. Ultimately, the algorithm flow chart is shown in Figure 2.

Figure 2. The flowchart of an improved firehawk optimization algorithm.

In order to perform a comprehensive experimental test of the FHO, the quality of
the FHO was assessed by using a set of classical functions [36]. This set of functions
is divided into two categories: the first category is called single-peaked functions, and
the main feature that discriminates these functions is that they have only one extreme
value point in the search domain, as shown in Table 1. The second category is called
multi-peaked functions, which have more than one locally optimal extreme value point in
a certain range, as shown in Table 2.
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Table 1. Six test functions with a single peak.

Table 2. Three test functions with multiple peaks.

We have selected some other algorithms for comparison experiments with FHO, such
as PSO, GWO and WHO algorithms. From these results, it can be obtained that FHO
achieved good results in most of the above function tests, as shown in Table 3. We
have selected a graph of the iterative process for some of the functions, as shown in
Figure 3. Among them, it can be clearly seen that the search speed and seek quality
of the FHO algorithm is excellent. This reflects that the performance of FHO is more
advantageous. Therefore, the initial parameters of the neural network algorithm were
searched for superiority using FHO in the next experiments.

From these results, it can be obtained that FHO achieved good results in most of the
above function tests, as shown in Table 3. We have selected a graph of the iterative
process for some of the functions, as shown in Figure 3. Among them, it can be clearly
seen that the search speed and seek quality of the FHO algorithm is excellent. This reflects
that the performance of FHO is more advantageous. Therefore, the initial parameters of
the neural network algorithm were searched for superiority using FHO in the following
numerical experiments.

4. The experimental setup and results.

4.1. Experimental environment. All models in this chapter were implemented using
the python programming language, and the RNN, LSTM and GRU based electricity load
forecasting models were implemented using the keras deep learning library. The hardware
environment for the above training models was an IntelCorei5-1035G1 CPU with 16GB
of memory.

4.2. Data sources. The experimental data for area A in this paper are provided from
the publicly available dataset in the 9th Electrical Mathematical Modelling Competition
[37], where those numerical data were collected for the period between Year 2012 and
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Figure 3. The trend comparisons of four optimization algorithms on nine
test functions.

Year 2015. The studied dataset was sampled for a one-day period and the corresponding
meteorological data, including features such as temperature, humidity and rainfall, were
downloaded to predict the short-term load. The paper proposes to train the first 80% of
the dataset and use the second 20% of the dataset as a test set for model prediction.

4.3. Data processing. Experimental data processing is a very important step in data
analysis. If the data is not normalized, the quantity difference between each feature is too
large, which makes the model difficult to converge in the training process, Resulting in
large errors. In order to avoid too large drop of data values during model training, which
will cause too large error in the model, all data shall be normalized first, and then their
values shall be compressed between 0 and 1. Therefore, we have the following formula:

y =
x−min(x)

max(x)−min(x)
. (11)

4.4. Long short-term memory neural network. The LSTM neural network model
controls the long-term state through three gates [14, 15] . In Figure 4, it shows the
structure diagram of LSTM neural network model, in which LSTM model has three input
values and two output values, including the input value at time epoch t, the output value
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Table 3. The performance evaluation of four optimization algorithms on
thirteen test functions.

at time epoch t1, and the unit state at time epoch t1. The output includes LSTM output
value at the current time and unit state at the current time [19, 20].

Figure 4. The structure diagram of studied LSTM neural network.

The switch mentioned above is called a gate. Let W be the weight vector of the gate
and b be the threshold. Its function is to make the model output a vector between 0
and 1 times the vector to be controlled. When the gate outputs a zero vector, it means
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Table 4. The parameters settings for two compared models.

that no information can pass through. When the gate outputs 1 vector, it means that
any information can pass through. According to the above description of LSTM, the
forward algorithm of LSTM neural network is mainly to update and output the cell state,
forgetting gate, output gate and inputs mentioned above. The calculation formula is:

ft = σ(ωf [ht−1, Xt] + bf ), (12)

it = σ(ωi[ht−1, Xt] + bi), (13)

C̃t = tanh(ωC [ht−1, Xt] + bC), (14)

Ot = σ(ωo[ht−1, Xt] + bo), (15)

ht = Ot ∗ tanh(Ct). (16)

4.5. Evaluation indicators. The logical regression model is mainly used to evaluate
the difference between the predicted value and the true value to judge whether the model
is good or not. In this paper, we select the Mean Square Error (MSE) and the Mean
Absolute Variance (MAE) to evaluate the performance of the studied models. Assume
that Ns is the sample size, yi is the real value of the sample at time i, and ŷl is the
predicted value of the sample.

a. Mean Square Error (MSE): The MSE is a convenient method to measure the average
error. The smaller the MSE, the higher the prediction accuracy. The calculation formula
is expressed as follows:

MSE =
SSE

N
=

1

N

N∑
I=1

(yi − ŷl)
2. (17)

b. Mean Absolute Variance (MAE): The smaller the MAE, the higher the prediction
accuracy. The calculation formula is expressed as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi|. (18)

4.6. The parameter settings in numerical experiments. The parameters of the
neural network model in this chapter are set as shown in Table 4 below, and the parameters
such as the number of hidden layers and neurons are obtained by the FHO optimization
algorithm.
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4.7. The improved hybrid neural network based on FHO algorithm. In general,
simple prediction algorithms are low in complexity and fast in prediction, but not effec-
tive, while hybrid models can significantly improve the accuracy of the algorithm. We
selected MSE from the two judging metrics as the optimization target of the optimization
algorithm, and optimization was sought for the four parameters of Nue1, Nue2, Dropout,
batch-size in the neural network. The simple algorithm steps of the hybrid model pro-
posed in this chapter are as follows, its flowchart is shown in Figure 5. (1) FHO search for
optimal parameters: The FHO metaheuristic algorithm simulates the foraging behavior
of the firehawk and performs the search and selection of the global optimal solution. (2)
Prediction: The clustered data are normalized to load data and then input to set the
optimal parameters for the FHO search for load prediction.

Figure 5. The flowchart of our hybrid neural network based on fire hawk
optimization algorithm.

4.8. Numerical results. From the experimental simulation results, Table 5 clearly shows
the data plots of the judging indicators for the results of each experimental model in areas
A and B. it can be seen that Taking the results of region A as an example, the MSE of the
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improved LSTM neural network was reduced by 0.0027. The MAE of the improved LSTM
neural network has been reduced by 0.011. In Figure 7, it shows the prediction graph
of FHO-LSTM, and Figure 6 shows the prediction graph of LSTM. From the compari-
son of simulation results, The prediction results of FHO-LSTM are more accurate. After
comparing the simulation experiments, the improved LSTM prediction method based on
FHO is more accurate compared to the LSTM prediction model. It is clear from the per-
formance judging table that the load prediction values of the improved prediction model
based on the combination of FHO and neural network proposed in this paper are more
accurate, indicating the effectiveness of the improved prediction model proposed in this
paper.

Figure 6. LSTM load forecasts for region A.

Figure 7. FHO-LSTM load forecasts for region A.

5. A decision-making process for economic load dispatch problem in electric
power system. In the previous section, it has been verified the high accuracy of forecast-
ing the short-term loads based on the presented hybrid neural network, which is going
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Figure 8. LSTM load forecasts for region B.

Figure 9. FHO-LSTM load forecasts for region B.

Table 5. Evaluation indicators for two models in comparison experiments
of areas A and B.

to provide an effective basis for conducting a better economic dispatch decision. This
helps to develop more scientifically efficient economic dispatch decisions, thus ensuring
the safe operation of the power system. In the field of power system planning and oper-
ation, optimizing the economic operation of power systems is a very important topic. In
economic dispatch decisions, the operating parameters and management of the unit are
usually optimized to reduce the unit’s operating costs and improve efficiency.

5.1. An optimization model for economic operation of unit combinations. In
power systems, efficient resource dispatch is essential for the economic operation of the



FHO-based Hybrid Neural Networks for Short-Term Load Forecasting in Economic Dispatch 277

Table 6. The notations in the studied optimization model for economic
operation of unit combinations.

power system. Therefore, the supply and demand balance of the power system is en-
sured, and the supply-side benefits are maximized, i.e., the operating costs of the units
are reduced. The objective of the Unit Commitment (UC) optimization problem is to
minimize the total operating cost of a generating unit, given the start-stop state and real-
time power output of the unit, and to meet certain technical safety constraints, including
generator output constraints, start-stop time constraints and power balance constraints.
The supply-side costs can be reduced by controlling the number of starts and stops and
optimizing the power allocation of the units. In Table 6, we summarize the mathematical
notations in the studied optimization model for economic operation of unit combination.

The objective function is the minimization of the total cost [24], which includes the
cost of coal consumption due to power generation and the start-up and shut-down costs
arising from the start-up and shut-down of the unit. By using the load forecast data as
the load constraint for unit at time , the equation is as follows:

min
N∑
i=1

(
T∑
t=1

Cf
i (Pi,t) + CU

i + CD
i ), (19)

where the coal consumption function of the unit is formulated as

ci(Pi,t) = aiP
2
i,t + biPi,t + ci. (20)

(1) Equation constraint:

N∑
i=1

Pi,t =

NL∑
i=1

Pd,t, (21)

(2) Inequality constraint:
i. Hot standby:

N∑
i=1

(ui,tPi,max − Pi,t) ≥ ρ

NL∑
i=1

Pd,t, (22)
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ii. Unit output constraints:

Pi,min ≤ Pi ≤ ui,tPi,max, (23)

iii. Unit climbing constraints:

−Rd ≤ Pi,t − Pi,t−1 ≤ Ru, (24)

iv. Unit start/stop time constraint:

t+TS−1∑
k=t

(1− ui,k) ≥ TS(ui,t−1 − ui,t), (25)

t+TS−1∑
k=t

ui,k ≥ TO(ui,t − ui,t−1), (26)

v. Start-stop cost constraint:

CU
i,t ≥ Hi(ui,t − ui,t−1), C

U
i,t ≥ 0, (27)

vi. Trendy safety restraints:

Pl,min ≤ Pl,t ≤ Pl,max. (28)

5.2. The simulation analysis of economic load dispatch decisions. In this section,
the experimental results of the FHO-LSTM model are going to be selected as the con-
straints for the simulation experiments, combined with the experimental results in Section
3. Here, we apply the classical IEEE30 test system [25] to verify the comparative analysis
of the effect of the FHO-LSTM short-term prediction model proposed in this paper on
the reduction of power system operating costs. The system wiring diagram is shown in
Figure 10, and the system contains thirty nodes with six generating units. The purpose
of the numerical experiments in this subsection is to reasonably determine the optimal
combination of units in the system based on the load forecasting results determined by
the proposed FHO-based hybrid neural networks (shown as Figure 11), to achieve the
effect of reducing the operating cost of the power system.

Figure 10. An illustrative example of the IEEE30 node test system.
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Table 7. The parameter settings for the simulated power system with six
generating units.

In Table 7, it summarizes the parameter settings for the simulation system with six
generating units and thirty nodes. The units of and are p.u., and the notations , and
denote coal consumption coefficients in tons/p.u., tons/p.u. and tons, respectively. The
symbol Ru/Rd denotes the climbing rate of the unit in p.u./hour, and the symbol TS/TO
denotes the minimum start-up and shutdown time in hour. The notations and indicate
the cost (in $/stop) of a single start and stop of the unit, respectively. The data are based
on the standardized system, so the power parameters and network parameters are also
standardized and dimensionless.

As an illustrated example of the economic dispatch optimization scheme, we conduct
the power load forecasting, dispatch decisions, and economic efficiency analysis in the
following. Firstly, the numerical results for the power load forecasting are shown in Figure
11, which depicts the hourly load prediction results for a specific date (January 5, 2015)
in the data set. We select the load data collected from January 1 to January 4, 2015 as
the training set in the comparison experiments for two forecasting methods LSTM and
FHO-LSTM. Note that, in Figure 11, the prediction results of LSTM are shown on the
left side, and the prediction results of FHO-LSTM are shown on the right side. In Table 8,
it shows the comparison results of forecasting errors between the LSTM and FHO-LSTM
forecasting methods. From the values of the two evaluation indicators,it can be seen that
the MSE of the improved LSTM neural network was reduced by 0.0052. The MAE of the
improved LSTM has been reduced by 0.0392.

Figure 11. The power load forecasting curves based on LSTM (on left
side) and FHO-LSTM (on right side) for January 5, 2015.

Next, for determining the dispatch decisions, the power load predicted by our fore-
casting method for each specific time period will be inputted into the IEEE30 simulation
system as the load value for that time period. In Figure 12, it shows the simulation results
of the power output of each unit. Besides, the optimized start/stop plan for six units is
summarized in Table 9. For the unit combination strategy, the power output of each unit
for the unit active output scheme is given in Table 10. In Table 9, it indicates the starting
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Table 8. The comparison results between the LSTM and FHO-LSTM
forecasting methods, where bold font represents better results.

Table 9. The optimized start/stop scheme for units.

and stopping status of the units at each time, with 0 indicating stop and 1 indicating
start. In Table 10, it shows the output of each unit at each time. From the empirical
analysis in Table 9, it can be observed that units 1 and 2 are in start-up operation during
the day. Besides, as the load demand increases, units 3 and 4 are started and put into
operation one after another. When the load demand changes, the optimal combination of
units and output is selected by weighing the cost of generation against the start-up and
shut-down costs.

Finally, in order to analyze the economic efficiency of corresponding dispatch strategies,
we compare the operating costs of the power system under the studied economic dispatch
model. The final unit operating costs are given in Table 11. The effectiveness of the
improved model proposed in this paper, by improving the accuracy of load forecasting,
can achieve a reduction in operating costs, thus maximizing the supply and demand side
benefits.

The short-term power load forecasting results presented in this paper can be further
developed and used to optimize the combination of power units in such a way that the
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Figure 12. The simulation results of the power output of each unit.

Table 10. The power output of each unit.

supply and demand sides of the power system achieve a dynamic balance and maximize
the overall benefits.
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Table 11. The determined running costs for two compared methods in
the studied system.

6. Conclusions. The development of the electricity market in China is a process that
requires continuous improvement. With the increase in electricity consumption and the
need for renewable energy to enter the grid, the development of smart grids faces great
challenges. In this paper, aiming to improve the operational efficiency of the power
systems in China, we studied an improved load forecasting method, which combines a
hybrid neural network with the FHO algorithm. In this work, we implemented a hybrid
FHO-based neural network to improve short-term load forecasting, where the FHO al-
gorithm was introduced to tackle the computational complexity in finding the optimal
model parameters. Based on a given load dataset, we conducted a comparison between
the proposed method with other commonly used algorithms. It was found that the im-
proved FHO-based algorithm presented in this paper could meet a higher search speed
and a larger search volume than other optimization algorithms, such as particle swarm
optimization, grey wolf optimizer, and wild horse optimizer. In addition, we developed
hybrid prediction models, named FHO-LSTM, and it is also compared with the original
method LSTM in the numerical experiments to verify the effectiveness. Based on the
comparison results, it illustrated that the proposed method achieved a better effect on
the power load prediction, especially in the cases of larger influence on external factors or
load data fluctuations. Moreover, based on the load forecasting results, we also conducted
an optimization of short-term economic dispatching decisions for power systems in this
paper. Combined with the load forecasting results, we determined an optimal dispatching
scheme for the combination of supply-side units, which minimized the system operating
costs under several practical constraints, including generator output constraints, start-
stop time constraints and power balance constraints. In the future works, we could make
efforts in the direction of improving the prediction effect and the running time of the
presented model. For example, there are still many influencing factors that have not been
considered in the prediction model, such as the socio-economic impact and the impact of
population settlement. Besides, the weight optimization of the proposed neural network
could be further investigated by applying other intelligent optimization algorithms, such
as fuzzy-based methods [26], chaotic sparrow search algorithm [27], whale optimization
algorithm [28], wolf pack algorithm [29], genetic algorithm [30], and so on.
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