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Abstract. In the field of intelligent driving, drivers do not need to manually operate the
steering wheel, and can complete the control of the vehicle directly through voice. Human
voice contains not only surface textual content information, but also implied emotional
information, so that the car understands human emotion is one of the keys to achieve
intelligent driving. Therefore, this work proposes a driver speech emotion recognition
method based on blind source separation and residual neural network. Firstly, a discrete
model is used to construct the required driver speech emotion model and to analyse the
noise environment in the car. Considering the influence of other special noises and in
order to ensure the effectiveness of speech emotion recognition, a signal-to-noise ratio of
-10 30 dB is chosen for the study. Then, due to some limitations of FastICA algorithm in
signal separation, especially when Gaussian noise exists in the signal or the data dimen-
sion is very high, the effect of signal separation may be affected. Therefore, an improved
speech enhancement algorithm combining Complete EEMD with Adaptive Noise (CEEM-
DAN) and FastICA is proposed to address the shortcomings of the FastICA algorithm.
Finally, the ResNet 34 model with four stages and multiple residual residual blocks in
each stage is used for driver speech emotion recognition.The inputs of the ResNet 34
model are the denoised and enhanced speech signal features.Experimental results on the
CASIA Speech Emotion Database show that the FastICA algorithm combined with em-
pirical mode decomposition is optimised for the separation of speech signals.The ResNet
34 model is used as an input to the ResNet 34 model, and the inputs are the denoised and
enhanced speech signal features. The recognition rate of the ResNet 34 model reaches a
maximum of 86.93% at 0 dB.
Keywords: Deep learning; residual networks; blind source separation; emotion recog-
nition; driver speech; ResNet

1. Introduction. Driver speech emotion recognition plays a key role in AI driving by
providing real-time monitoring and recognition of the driver’s emotional state for a smarter,
safer and more comfortable driving experience [1, 2]. A driver’s emotional state has a
significant impact on driving safety and experience. Speech emotion recognition can au-
tomatically detect and identify the driver’s emotional state, such as anger, stress, and
fatigue, by analysing the driver’s voice features [3]. This allows the intelligent driving
system to make corresponding adjustments and feedbacks to the driver’s emotions, such
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as adjusting the interior environment and providing a safer and more comfortable driving
experience [4].

Driver voice emotion recognition can be used to improve the human-computer inter-
action experience. Intelligent driving systems can adjust the response and tone of voice
assistants according to the driver’s emotions, making them more human and emotional.
This can facilitate effective communication and co-operation and enhance the interaction
experience between the driver and the vehicle. A driver’s emotional state may affect his
or her driving behaviour and reaction time [5, 6]. By monitoring the driver’s emotional
state in real time, the intelligent driving system can make targeted adjustments to the
driving environment and vehicle operation to improve driver safety and comfort. For
example, the system can remind the driver to take a break or take safe driving measures
when the driver is in a poor mood or fatigued [7]. Through voice emotion recognition,
the intelligent driving system can also monitor the driver’s state of health. For example,
it can detect the driver’s level of fatigue or high-pressure emotions to remind the driver
to take a break or take appropriate action to safeguard the driver’s safety.

Challenging in the recognition of driver speech emotion is the processing of signals
generated in noisy and constantly changing automotive environments, and how driver
speech is collected in real environments directly affects the accuracy of the experimental
results. Because the driver’s emotional state related to vocal cords, such as the pitch
and volume of the voice, can be disturbed by vehicle noise, researchers have considered
a variety of devices for recording voice, including directional microphones, condenser
microphones, and microphone arrays. As former vehicles are increasingly equipped with
a wide variety of sensors, in order to better detect driver emotions, in the future speech
will come together with facial and physiological signals to combine multiple signals will
improve performance. In addition, the contextual information of the speech is also an
important indicator [8, 9], and this multimodal emotion recognition will bring a large
number of parameters while improving the accuracy. If the traditional machine learning
approach is still used the performance will be greatly reduced, in order to be able to
find the features that express the driver’s emotion from large-scale data, the use of deep
learning approach is the study of such problems is becoming increasingly popular. The aim
of this study is to separate the driver’s speech signal from the complex driving environment
using blind source separation technique, and then accurately identify the emotional states,
such as fatigue, nervousness, anger, and other negative emotions through residual neural
networks, so as to warn potential driving risks and reduce traffic accidents

1.1. RelatedWork. Deep learning-based speech emotion recognition is a research hotspot
in the field of artificial intelligence in recent years, which is mainly applied to emotional
robots, online education, customer service centres, assisted driving, criminal investigation
and other fields.

Convolutional neural network (CNN) [10], as a deep learning model with strong feature
extraction and modelling capabilities, has received wide attention in the field of speech
emotion recognition. Some preliminary researches have achieved good results and shown
greater research potential. Hajarolasvadi and Demirel [11] proposed a speech emotion
recognition method based on spectrogram and CNN. Firstly, Wiener filtering algorithm
based on a priori signal-to-noise ratio is used to extract and normalise the spectrogram
features of speech, and then CNN is selected to classify the spectrogram, and the exper-
imental results achieve a high emotion recognition rate. Makhmudov et al. [12] propose
a deep learning-based speech emotion recognition method. Firstly, the speech signal is
preprocessed to extract features such as Mel Frequency Cepstrum Coefficient (MFCC).
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Then, the extracted features are modelled using CNN and the model output is classified
using fully connected neural network (FCN).

Recurrent neural networks (RNNs) [13], especially long and short-term memory net-
works (LSTMs) [14] and gated recurrent units (GRUs) [15], have strong sequence mod-
elling capabilities and can capture the temporal information in speech signals, and thus
have a greater application value in the field of speech emotion recognition. Jiang et al.
[16] proposed a speech emotion recognition using RNNs with a local attention mechanism
as a method. The RNN is used to capture the temporal information of the speech signal
and combined with the local attention mechanism to improve the attention of the model.
This allows the model to better recognise emotionally relevant sound features and improve
the accuracy of emotion recognition. Zhao et al. [17] proposed an audio sound emotion
recognition method based on CNN and LSTM. CNN is used to extract features from
the audio stream and LSTM network is used to capture the temporal information. An
approach similar to an attention mechanism is also used to help the network pay better
attention to the sound features relevant for emotion recognition. The entire model is end-
to-end and allows learning emotion recognition tasks directly from raw audio data. Speech
emotion recognition refers to identifying the emotional state of a speaker by analysing the
emotional information in the speech signal. However, speech signals often have redun-
dancy and noise, which affect the accuracy of emotion recognition. Therefore, speech
enhancement plays an important role in speech emotion recognition, which can improve
the accuracy and stability of emotion recognition. Hasan et al. [18] proposed a speech
enhancement method based on spectral subtraction and energy operator, which analyses
and corrects speech signals in the frequency domain on the basis of the short-time Fourier
transform, and achieves effective suppression of noise. The results show that the method
exhibits good performance in speech emotion recognition tasks. Lei et al. [19] proposed a
speech enhancement method based on Fast Independent Component Analysis (FastICA)
[20, 21] and nonlinear spectral subtraction by applying FastICA to the speech signal to
by applying FastICA to the speech signal, independent components are extracted and the
signal is denoised using nonlinear spectral subtraction to achieve effective elimination of
noise interference.

1.2. Motivation and contribution. Residual neural network solves the problem of gra-
dient vanishing in deep neural networks by introducing residual connections, which allows
the model to be deeper and improves the representation ability of the model. Therefore,
compared with other deep learning models, residual neural networks have greater poten-
tial for application in the field of speech emotion recognition. The FastICA algorithm
has some limitations in signal separation, especially when the signal is in the presence of
Gaussian noise or when the data dimensionality is very high [22], the effectiveness of the
signal separation may be affected. For example, suppose there is a mixed-signal dataset
containing multiple audio signals, where each signal is affected by Gaussian noise. In
this case, the FastICA algorithm may be disturbed by the noise during signal separation,
resulting in failure to accurately separate the original signals.

Therefore, this work proposes a driver speech emotion recognition method based on
improved FastICA and residual neural networks. The main innovations and contributions
of this work include:

(1) Aiming at the problem of Gaussian noise or data dimensionality that cannot be
solved by traditional FastICA algorithms in complex in-vehicle environments with low
signal-to-noise ratios, it is proposed that Complete EEMD with adaptive noise (CEEM-
DAN) [23, 24] be used for signal preprocessing. The original speech signal is decomposed
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into intrinsic modal functions (IMFs) of different frequencies, and then independent com-
ponent analysis is performed using FastICA to find out the most informative sound com-
ponents, so as to enhance the speech signal.

(2) To address the problem of degradation of deep models during deep learning-based
speech emotion recognition, this work uses ResNet 34 model instead of CNN model for
speech emotion recognition. ResNet 34 [25] has four stages, each stage has multiple
residual residual blocks. Each block has 3 convolutional layers. ResNet 34 is characterised
by the design of the residual network which allows it to train deeper networks, solving
the problem of degradation of deeper networks.

2. Driver voice emotion modelling. Emotion is a special attribute of higher animals,
and human dialogue and communication contain emotional expression. By discovering the
hidden emotional factors, we can better understand the semantics and know the mood of
both parties at this time in order to communicate better. The first step in studying emo-
tions is to choose a representation model that can define and compare different emotional
states. Currently, researchers mainly classify emotion classification models into discrete
and dimensional models.

(1) Discrete Models
A discrete model of emotion is one that views emotions as several discrete categories of

emotion, with all emotions being modifications and combinations of these basic emotions
in varying degrees. McDougall introduced the concept of basic emotions in the year of
1919, which was the beginning of the study of emotions in psychology. Different emotions
are named with different labels, e.g., anger or fear correspond to two different emotion
labels respectively. Different researchers have their own views on how to categorise emo-
tions with labels and how many labels are needed. The relationship between similar facial
expressions and emotions in different cultures has resulted in six ”basic emotions”, such
as anger, disgust, happiness, sadness, shock, and fear. In addition, eight bipolar emo-
tions, anger, happiness, sadness, disgust, fear, approval, anticipation, and alarm, which
also include intensity and mixed emotions, have been generated.

(2) Dimensional Modelling
Dimensional models are categorised as one, two, three, and multidimensional emotion

models. Dimensional models are used to express different emotions by expressing them
at different locations in dimensional space. On the other hand, continuous expression of
emotions emphasises that emotional states can be constantly changing. Some applications
require the identification of emotion level as a continuous variable. The identification of
mood level as a continuous variable is done on the basis of its three basic elements: (a)
arousal, (b) value, and (c) dominance. Each element is a continuous variable containing
values within a given range. For example, a low value indicates low attention, while a high
value indicates high attention. Any discrete emotion can be interpreted in this continuous
three-dimensional space.

A number of studies have investigated the most frequent emotional states while driving
and found that these emotional labels (generated when asking drivers how they feel) are
labels that partially overlap with those most frequently described by discrete emotion
models. As a result, most researchers have used discrete models, with a few opting for
dimensional models. The dimensional model, although more precise and expressive in its
description of emotion, is very difficult to quantify specifically across the three dimensions
and relies heavily on subjective judgement by the subject, making it difficult to pinpoint
a particular emotion. In contrast, the discrete emotion model is simple and intuitive, and
the emotions used are common emotions in daily life, which are also applicable to the
driver’s emotional state. Therefore, the discrete emotion model was adopted in this work.
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3. Speech enhancement based on blind source separation in in-vehicle envi-
ronments.

3.1. Analysis of the noise environment inside the car. Most of the noise inside
the car is low-frequency noise (250Hz ∼ 500Hz), which has strong penetrating power and
is not easy to deal with in acoustic sound insulation technology. Therefore, in-vehicle
noise is unavoidable in the process of car travelling. In-vehicle noise is unavoidable in
the process of car travelling. In-vehicle noise is transmitted into the car by the way of
resonance between the sound and the car, especially the low-frequency noise. The normal
sound of people’s normal communication is 40-60 decibels, so the noise inside the car is
within the acceptable range of 60 decibels or less.

Voice recorded in a driving environment is not pure voice. Generally speaking, people
normally communicate at around 60 to 70 dB, which are measured in SPL (Sound Pressure
Level).

Lp = 20 log

(
P

P0

)
(1)

Where P0 is the reference sound pressure, the size of 20 micropascals, is the lowest
sound pressure at a frequency of 1000 Hz audible to the human ear.

In this paper, the signal-to-noise ratio is used to analyse how much the driver’s speech
signal is affected by environmental noise. The signal-to-noise ratio expression is.

SNR = 10 log

∑
x2(n)∑
r2(n)

= 10 log
Ws

Wr

(2)

where
∑

x2(n) is the clean driver speech signal energy;
∑

r2(n) is the ambient noise
signal energy inside the vehicle; and Ws and Wr represent their respective average power.

The sound power W can also represent the magnitude of the sound, which can be
ignored in the surroundings. When the shape of the source is considered as a point, the
sound pressure level Lp and power level Lw are transformed as follows.

Lp(r) = Lw − 10 log
(
4πr2

)
(3)

where r is the straight-line distance between the sound source and the measurement
point.

The power level Lw expression is.

Lw = 10 log

(
W

W0

)
(4)

where W and W0 represent sound power and reference sound power, respectively.
The baseline sound power is 10−12W . 60 dB sound pressure level and 50 dB ambient

noise are chosen to calculate the SNR of 10 dB. Selecting 60 dB SPL and 50 dB ambient
noise, we can get the SNR of 10 dB under normal driving conditions, and considering
the influence of other special noises and to ensure the effectiveness of the speech emotion
recognition system, this paper selects the SNR of -10∼30 dB for the study.

3.2. Speech enhancement based on conventional blind source separation. Fas-
tICA is a statistical method for blind source signal separation that recovers the indepen-
dent components of the original signal from the mixed signal. Compared with other speech
enhancement techniques, FastICA does not require a priori knowledge, has low complex-
ity, and can improve speech enhancement performance even at low signal-to-noise ratios.
FastICA can still work well in extremely harsh driving environments.
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Suppose there areN unknown source signals si(t), i = 1, 2, . . . , N , which are statistically
independent from each other, these N source signals form a vector s = [s1(t), . . . , sN(t)],
which is captured by M sensors through the linear instantaneous mixing system, and
get M observation signals x = [x1(t), . . . , xM(t)], then the M observed signals are linear
combinations of these N source signals.

x = A · s (5)

where A is the linear instantaneous mixing system m× n mixing matrix, and A is the
invertible matrix.

The independent component analysis aims to obtain the estimated signal vector y =
[y1(t), . . . , yN(t)] of the source signal by estimating the aliasing matrix A.

y = Wx (6)

When the above conditions are satisfied then the relationship between the source signal
s, the observed signal x, and the estimated signal y can be established.

y = Wx = WAs (7)

where W is the unmixing matrix. Define the global matrix G = WA, ideally, W is the
inverse matrix of the admixture matrix A, and the global matrix G is the unit substitution
matrix. The unit substitution matrix is the matrix obtained by exchanging some rows
and columns of the unit array. Therefore, the process of blind source separation can be
mathematically interpreted as the unmixing process of the collapsed matrix. Under the
condition that the alias matrix A and the source signal s are unknown, the estimated
signal y is optimally approximated to the source signal S according to certain criteria.
The above assumption is a noise-free scenario, but the transmission channel itself and

the environment will also be accompanied by a certain amount of noise, so the received
observation signals are noisy signals, then Equation (5) is converted as follow:

x = As+ n (8)

where n = [n1(t), . . . , nN(t)] is the noise vector.
The selection of the objective function is often based on the statistical information of the

source signal, based on information theory or based on higher order statistics. Whereas,
when dealing with blind separation of underdetermined conditions, other means are usu-
ally required to obtain the lack of information about the source signal, such as through
dictionary learning methods and the construction of virtual multichannels. Centring the
mixed signal allows the components of the mixed signal to be transformed into quantities
with a mathematical expectation of zero. Centring can be a first step towards simpli-
fying the methods of independent component analysis and reducing the computational
complexity, as shown below:

x̃ = x− E(x) (9)

where x is the mixed signal, E(x) is the mathematical expectation, and x̃ is the centred
mixed signal.

Whitening, i.e., eliminating the correlation between the components of the observed
signal by a specific linear transformation, and normalising it so that its covariance is 1
and the covariance matrix is a unit array, is usually achieved by using eigenvalue decom-
position. The whitened signal is denoted as x̄.

x̄ = Qx̃ (10)
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where Q is the whitening matrix.
By whitening, x̄ is made to have unit variance and its covariance matrix is Rx = I.

Eigenvalue decomposition of Rx.

Rx = V ΛV T = V Λ1/2Λ1/2V T (11)

Then the whitening matrix Q is defined as.

Q = Λ−1/2V T (12)

where V is the orthogonal matrix of eigenvectors and Λ is the diagonal array of eigen-
values.

When the source signal S is a combination of several independent signals, the above
steps need to be continued sequentially. Subtract each independent source signal si(t) from
the observed signal X until the source signals are completely separated. The FastICA
algorithm has some limitations in signal separation, especially when the signal is in the
presence of Gaussian noise or when the data dimensions are very high, the effectiveness
of the signal separation may be affected. In order to solve the problems that arise, this
paper proposes an improved speech enhancement algorithm that combines CEEMDAN
and FastICA to address some of the shortcomings of the FastICA algorithm.

3.3. Improved speech enhancement based on CEEMDAN-FastICA. By com-
bining CEEMDAN and FastICA, the time-frequency localisation of modal decomposition
and the independent component separation ability of FastICA can be fully utilised to
enhance signal separation. CEEMDAN can be used as a pre-processing means to convert
the signal to the time-frequency domain, and then FastICA algorithm can be applied to
separate the independent components. This combination method can improve the accu-
racy, robustness and reliability of signal separation, which is especially suitable for speech
signal enhancement problems in complex in-vehicle environments.

CEEMDAN is an improved EMD method that can handle nonlinear and nonsmooth
signals more effectively, making the decomposition results more accurate and reliable.
Compared with EMD and EEMD, CEEMDAN introduces an adaptive noise model, which
can better remove the noise in the signal and improve the accuracy and stability of the
signal. CEEMDAN adopts an integrated learning approach to decompose the signal
by combining several independent EMD algorithms, which improves the stability and
robustness of the algorithm.

Therefore, in this paper, a combination of CEEMDAN and FastICA can be used to
solve the mixed signal separation problem in the speech enhancement task. CEEMDAN
is a data-based adaptive signal decomposition method, which can decompose the mixed
signal into multiple intrinsic modal functions (IMFs), and each IMF corresponds to a
signal component at different frequencies. FastICA is an independent component analysis
method which can estimate and separate the independent components of a mixed signal.
By using the IMFs obtained from CEEMDAN as inputs and combining the separation
capability of FastICA, the different signal components in the mixed signal can be separated
more effectively, thus effectively improving the effect of speech enhancement.

Functions or physical quantities such as instantaneous frequencies that exhibit local
features show their great advantages for the analysis of non-stationary signals. Therefore,
before discussing the CEEMDAN-based separation algorithm, the instantaneous frequen-
cies are established first. For an arbitrary time series x(t), its Hilbert transform is:

y(t) =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (13)



292 E.-L. Xie and C. Zhao

Construct the parser function as follows:

z(t) = x(t) + iy(t) = a(t)ejφ(t) (14)

where a(t) =
√
x2(t) + y2(t) is the magnitude function, and φ(t) = arctan(y(t)/x(t))

is the phase function.
The phase function φ(t) is derived from time as the instantaneous frequency.

ω(t) =
dφ(t)

d(t)
(15)

In order to overcome the drawback of introducing pairs of additional noises in EMD
and generating noise residuals in the reconstructed signal, CEEMDAN adds a specific
noise at each stage of the decomposition, generating a residual component that is used
only for obtaining the intrinsic modal function at each stage, providing an accurate re-
construction of the original signal and a better separation of the signal components at a
lower computational cost. A set of noise ωi is first added to the original signal x.

Mi = x+ ωi (16)

EMD is done separately for Mi and averaged over each of the obtained imf to obtain
the final first-order eigenmode function imf1[n].

r1[n] = x[n]− imf1[n] (17)

Define the operator Ej(·) to denote the jth mode obtained by performing EMD on the
contents of the brackets. Perform a first-order modal computation on a set of additional
noise ωi[n] and add it to the first-order residual component r1[n].

r1[n] = r1[n] + ε1E1(ωi[n]) (18)

EMD is performed on the above equation, and the first-order modes obtained are en-
semble averaged as the second-order eigenmode function of the original signal x.

imf2[n] =
1

I

I∑
i=1

E1 (r1[n] + ε1E1(wi[n])) (19)

By analogy, the CEEMDAN decomposition of the original signal is obtained.

imfk+1[n] =
1

I

I∑
i=1

E1 (rk[n] + εkEk(ωi[n])) (20)

CEEMDAN reduces the number of iterations while accurately eliminating the effect of
additional noise on the residual noise of the reconstructed signal, and solves the problem
of choosing different additional noise sizes to produce different decomposition modes.

Using CEEMDAN’s ability to adaptively decompose the signals themselves, the result-
ing eigenmode functions are used as virtual extensions of the multichannel signals, thus
transforming the underdetermined puzzle into positive definite conditions. The source
signals are then separated by borrowing the FastICA separation algorithm. For the three
source signals s1, s2 and s3, taking the two observed signals x1 and x2 obtained after
aliasing as an example, the steps of the improved CEEMDAN-FastICA-based speech en-
hancement method are as follows.

(1) The observed signals x1 and x2 are decomposed into multiplexed eigenmode func-
tions imf1 = [imf1, imf2, . . . , imfn]

T and imf2 = [imf2,1, imf2,2, . . . , imf2,n]
T using CEEM-

DAN.
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(2) Calculate the similarity coefficients between each intrinsic modal function imf1
and imf2, and the observed signals, select the component with the largest correlation
coefficient, eliminate the redundant components, and assume that imf1 is the component
with the largest correlation coefficient and (x1, x2) to form a three-channel mixed signal.

(3) Separation of the newly generated observation signals is achieved using the FastICA
algorithm.

In ICA, computational complexity makes the calculation of negentropy often not straight-
forward. Therefore, an approximate estimation of the negentropy is often made by ap-
proximating the probability density function with a non-polynomial function.

J(w) ≈ c
[
E
{
G
(
wT x̄

)}
− E {G(v)}

]2
(21)

where G(·) is a non-quadratic function, c is a constant, w is a separation vector, v is
a Gaussian random variable with zero mean and unit variance, and x̄ is a mixed signal
pre-processed with centring and whitening.

The approximate estimation of negative entropy requires a normalisation constraint
on the random variables, i.e., the variance of the separated signals is required to be 1.
This constraint flows from the preprocessed signal vector x̄ to the separation vector w,
which normalises the separation vector, i.e., ∥w∥2 = 1. The cost function of the FastICA
algorithm can be fully expressed as follows.{

J(w) ≈ c
[
E
{
G
(
wT x̄

)}
− E {G(v)}

]2
∥w∥2 = 1

(22)

FastICA uses Newton’s iteration method for optimisation operations. Newton’s itera-
tive method can solve for approximate roots or even heavy roots of an equation in the
real complex number domain. The function f(x) is expanded in a Taylor series in some
neighbourhood of the point x0 as.

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)(x− x0)

2

2!
+ · · ·+ f (n)(x0)(x− x0)

n

n!
+Rn(x) (23)

The iterative relation equation for Newton’s iterative method is derived as:

xn+1 = xn −
f(xn)

f ′(xn)
(24)

According to the Kuhn-Tucker condition, the condition for the cost function equation
(20) to reach an extreme point is.

E
{
xg

(
wTx

)}
− βw = 0 (25)

where β is a constant and g is the first order derivative of the function G.

F (w) = E
{
xg

(
wTx

)}
− βw (26)

Solve for the extreme points of the cost function, i.e., solve for F (w) = 0. Solve the
above equation according to Equation (22).

wk+1 = wk −
F (wk)

∂F (wk)
(27)

where k is the number of iterations, ∂F (wk) is the first order derivative of F (wk) and
wk is the separation vector. Taking the first order derivative of F (wk) and normalising it,
the iterative counting method of FastICA can be obtained as follows:
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w∗ = E
{
xg

(
wT

k x
)}

− E
{
g′
(
wT

k x
)}

wk (28)

wk+1 =
w∗

∥w∗∥
(29)

4. Speech emotion recognition based on residual neural networks. In the pro-
cess of deep learning-based speech emotion recognition, it has been found that when the
number of model layers increases to a certain level, the effectiveness of the model will
decrease instead of increasing. In other words, degradation of the deep model occurs.
To solve this problem, the internal structure of the model needs to be made capable of
constant mapping to ensure that during the process of stacking the network, the network
will not be degraded at least by continuing to stack. Therefore, in this work, the ResNet
34 model is used instead of the CNN model for speech emotion recognition. The inputs
to the model are the spectral features of the speech signal enhanced by the data described
above.

ResNet 34 has 4 stages, each with multiple residual residual blocks. Each block has 3
convolutional layers with ReLU activation function and batch normalisation in between.
The residual block in the first stage has 2 convolutional layers and the residual block in
the rest of the stages has 3 convolutional layers. The size of each convolutional layer of
ResNet 34 is 3× 3 and the total number of layers is 34, so it is called ResNet 34. ResNet
34 is one of the most commonly used models in image-net training. ResNet 34 is used for
image classification, is more effective, and has the advantages of high accuracy and fast
training process, making it one of the most applicable models.

ResNet 34 is a classic model in the ResNet family [26, 27] that uses 34 convolutional
layers to extract features. ResNet 34 features a residual network design that allows it to
train deeper networks, solving the problem of degradation of deeper networks. ResNet 18
has a relatively simple network structure with shallow depth, which is a good choice for
scenarios with limited computational resources, but ResNet 34 performs better in complex
in-vehicle environments. ResNet 34 has connectors that ensure that the deeper networks
perform at least as well as the shallower networks. A good choice, but in complex in-
vehicle environments, ResNet 34 performs better. ResNet 34 deepens the network while
ensuring that the performance of the deeper network is at least equal to that of the
shallower network. The structure of the ResNet 34 layer network is shown in Figure 1.

Firstly, a convolutional layer, followed by a pooling layer. Then there is a series of
residual units, which are again downsampled by one average pooling. Finally, the final
output is obtained by a fully connected layer. The structure of this network looks very
simple and is basically obtained by stacking the residual structures. The configuration
parameters of the ResNet 34-layer network are shown in Table 1.

As the neural network becomes deeper, the range of gradient variations becomes larger,
which can lead to a more significant occurrence of the gradient vanishing or gradient
explosion problem. This is usually solved by data normalisation, weight initialisation,
and batch normalisation (BN). After solving the gradient vanishing or explosion problem,
we still have the problem of poor results with deep layers. This problem can be solved by
residual structure, the deeper the layer, the smaller the error rate.

This model convolves the input on the main line, after two 3*3 blocks of convolved
residuals. There is a connecting line on the right side to connect directly from the input
to the output. The feature matrix obtained on the branch is then added to the input’s
feature matrix in a summing operation, which is then passed through the ReLU function.
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Figure 1. ResNet 34-layer network structure

Table 1. Configuration Parameters for ResNet Layer 34 Networks

Layer Output shape Param
Sequential 13 (None, 56, 56, 64) 9716
Sequential 14 (None, 56, 56, 64) 235572
Sequential 18 (None, 28, 28, 128) 1168884
Sequential 23 (None, 14, 14, 256) 7160308
Sequential 30 (None, 7, 7, 512) 13648372

Since it is a summing operation, it should be noted that the main branch feature matrix
and the output feature matrix of the shortcut must be the same.

5. Experimental results and analyses.

5.1. Experimental environment and dataset. In the experimental phase, 1200 speech
samples from the CASIA linguistic emotion database were used, including six emotions:
angry, happy, fear, sad, surprise, and neutral. CASIA was recorded in a pristine, noise-free
studio, containing a total of 9600 different articulatory utterances from two males and two
females. CASIA was recorded with a sampling rate of 16k Hz, a quantisation resolution
of 16 bit, and a storage format of pcm. The training and test sets were divided 4:1, with
960 pure language samples for training and 240 for testing. In order to explore the results
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in different noise environments, different background noises are added to the test set at
signal-to-noise ratios of 30 dB, 20 dB, 10 dB, 0 dB, and -10 dB. The training feature
parameters are extracted 20-dimensional speech emotion features that are dimensionally
reduced using the PCA algorithm.

5.2. Effectiveness analysis of speech enhancement. After randomly selecting a pure
speech in the CASIA linguistic sentiment database and superimposing 0dB music back-
ground noise, the FastICA algorithm and the CEEMDAN-FastICA algorithm were used
for denoising and enhancement, respectively. The intuitive speech waveforms show that
the pure original speech is severely impaired by the time domain waveform interference of
the music noise superimposed on it. A comparison of the denoising enhancement effects
of the two algorithms is shown in Figure 2.

It can be found that CEEMDAN-FastICA improves the output signal-to-noise ratio for
all four noise environments under all conditions except for music noise at a signal-to-noise
ratio of -10 dB, and in particular, it has the most prominent effect on engine noise and
vehicle tyre noise. Also at 0 dB SNR, the CEEMDAN-FastICA algorithm has the highest
overall improvement rate for all four noises. Overall, it shows that the FastICA algorithm
combined with CEEMDAN is optimised for speech signal separation.

5.3. Performance comparison of different recognition models. In order to explore
the performance of different models in white noise environments, the recognition rates of
different speech emotion recognition models in white noise environments are compared
after denoising and enhancement using the CEEMDAN-FastICA algorithm, as shown in
Table 2.

Table 2. Recognition rate of different models under white noise /%

White noise ∞ 30 dB 20 dB 10 dB 0 dB -10 dB
CNN 73.37 74.75 75.28 76.91 82.93 50.58
LSTM 74.45 76.55 75.96 78.89 83.38 52.25
CNN+LSTM 77.01 75.93 80.29 82.63 85.33 55.13
ResNet34 78.28 79.36 81.89 84.37 86.93 53.37

It can be seen that when the SNR is higher than 0 dB, all the four deep learning models
are able to improve the recognition rate of speech emotion in noisy environments, with
the ResNet34 model showing the best improvement. the recognition rate of the ResNet34
model reaches a maximum of 86.93

6. Conclusion. In this work, a driver speech emotion recognition method based on im-
proved FastICA and residual neural network is proposed. Aiming at the problem of
Gaussian noise or data dimensionality that cannot be solved by the traditional FastICA
algorithm in low signal-to-noise ratio complex in-vehicle environments, it is proposed
that CEEMDAN be used for signal preprocessing. The original speech signal is decom-
posed into intrinsic modal functions (IMFs) of different frequencies, and then independent
component analysis is performed using FastICA to find out the most informative sound
components so as to enhance the speech signal.

To address the problem of degradation of deep models during deep learning-based
speech emotion recognition, this work uses ResNet 34 model instead of CNN model for
speech emotion recognition. ResNet 34 has 4 stages, each stage has multiple residual
residual blocks. Each block has 3 convolutional layers. ResNet 34 is characterised by the
design of the residual network which makes it possible to train deeper networks, solving
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Figure 2. Comparison of Denoising Enhancement Effects

the problem of deep network degradation. Overall, it shows that the FastICA algorithm
combined with CEEMDAN is optimised for speech signal separation.
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