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Abstract. Short-term traffic flow prediction is an important research area in smart
transportation systems. To enhance prediction accuracy, scholars have been exploring
different combination models. Among these models, the wavelet neural network stands
out as it combines wavelet analysis and neural networks, offering improved results in
short-term traffic flow forecasting. The tunicate group optimization algorithm is another
promising technique, characterized by its simplicity, efficiency, and minimal parameters
required. In this study, we introduce the tunicate swarm algorithm to adjust the weights
and wavelet factors of the network in the Wavelet Neural Networks (WNN) model, aim-
ing to enhance its prediction accuracy and overall performance. We first apply wavelet
analysis to distill the key features of the traffic flow data. Next, we construct the WNN
model and input the traffic flow data, along with data from previous moments, for train-
ing and learning. Subsequently, we optimize the network’s weights and wavelet factors
using the Tunicate Swarm Algorithm (TSA), further enhancing the model’s performance.
Experimental findings showcase that our suggested technique attains remarkable precision
and consistency in short-term traffic flow forecasting. Thus, this method holds significant
value in traffic management and planning, providing practical applications for improving
the reliability and accuracy of traffic flow forecasting.
Keywords: Wavelet neural network; Tunicate swarm algorithm; Short traffic flow pre-
diction;

1. Introduction. In the recently, with the accelerating urbanization and increasing traf-
fic flow, the need for accurate prediction of traffic flow changes has become increasingly
urgent. As a significant component of traffic management and planning, short-term traffic
flow prediction holds significance for enhancing the efficiency of road networks, decreasing
traffic congestion, and improving the travel experience. Short-term traffic flow forecasting
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focuses on forecasting traffic flow in the next few hours or days, usually based on real-time
data and historical data to guide traffic management and planning decisions; The long-
term traffic flow forecast pays more attention to the traffic flow forecast in the next few
months or years, and usually needs to consider more factors, such as urban expansion,
population growth, new roads, etc., to guide urban traffic planning and infrastructure
investment decisions.

Traffic flow is influenced by diverse elements, including complex traffic networks, unfore-
seen events, and population changes, which makes prediction a complex and challenging
task [1,2,3]. In order to tackle this problem, researchers have suggested numerous methods
to enhance the accuracy and reliability of short-term traffic flow prediction. Traditional
statistical and temporal models have achieved some success in prediction [4]. However,
these methods often struggle to capture the nonlinear characteristics and spatio-temporal
correlations present in traffic flow data. As a result, researchers have turned their atten-
tion towards deep learning methods [5,6]. The WNN, combining the strengths of neural
networks and wavelet analysis, offers powerful nonlinear modeling and time-frequency
feature extraction capabilities. Nevertheless, further improving the accuracy and robust-
ness of WNN models for prediction remains a challenge. In our paper, we introduce an
approach that optimizes wavelet neural networks using the Tunicate Swarm Algorithm
(TSA) to tackle the aforementioned difficulties. The TSA, as an optimization technique,
effectively optimizes the parameters of the WNN by iteratively searching for the best so-
lution. By incorporating the tunicate swarm algorithm, we can enhance the performance
of the WNN model and improve the accuracy and stability of prediction. To assess the
efficacy of our method, we perform experiments using real traffic flow data sets. The
experimental findings show that our method, which optimizes wavelet neural networks
using TSA, achieves superior results in prediction compared to traditional approaches.
This research provides valuable insights for traffic management and planning and has the
potential to enhance the precision and reliability of traffic flow prediction in practical
applications.

The layout of our paper is as follows: firstly, we introduce the related research and the
current situation. Secondly, we briefly outline the evolution theory of the tunicate swarm
optimization algorithm and wavelet neural networks. Next, we explain the fundamental
method of optimizing wavelet neural networks using the tunicate swarm algorithm for
prediction. We then conduct simulations using traffic flow data and perform comparative
experiments. Finally, we conclude with a summary of our proposed method.

1.1. Related Work. The increasing attention in recent years towards short-term traf-
fic flow prediction models, particularly within the realm of wavelet neural networks, has
resulted in a multitude of research endeavors. Researchers have extensively explored
the optimization of wavelet neural networks using intelligent algorithms to enhance the
accuracy of predictions. Numerous studies have been conducted, each with its unique
contribution to the field. Jiang and Adeli [7] proposed a nonparametric dynamic time-lag
recursive wavelet neural network model, specifically designed for traffic flow prediction.
Their approach accounted for the dynamic nature of traffic patterns, ensuring accurate
predictions. Ravish and Swamy [8] introduced a novel solution for travel time prediction,
emphasizing precision in their model. Saleem et al. [9] proposed a fusion-based intelli-
gent traffic congestion control system for VNs (FITCCS-VN) using ML techniques that
collect traffic data and route traffic on available routes to alleviate traffic congestion in
smart cities. Hu et al. [10] optimized support vector machines using the particle swarm
algorithm to predict short-term traffic flow. Their model outperformed traditional meth-
ods, such as the BP neural network and auto-regressive moving average model. Chan et
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al. [11] proposed a hybrid approach, combining an adaptive particle swarm optimization
algorithm with neural networks and fuzzy inference for short-duration traffic flow predic-
tion. The model was compared against the genetic algorithm, demonstrating its superior
performance. Tan et al. [12] introduced a novel method based on dynamic tensor decom-
position for short-duration traffic flow prediction. By effectively extracting information
from traffic flow data, their model achieved accurate predictions. Other researchers ap-
plied advanced techniques to optimize wavelet neural networks. Cheng et al. [13] utilized
turbulence theory and support vector machine regression to develop a multi-source traf-
fic flow prediction method. Yang and Hu [14] enhanced the genetic algorithm with a
clustering search strategy, creating the IGA-WNN model for improved accuracy. Chan
et al. [15] focused on high-speed highways and employed an adaptive particle swarm
optimization algorithm, combined with neural networks and fuzzy inference, for short-
term traffic flow prediction. Xu et al. [16] optimized wavelet neural networks using an
improved genetic algorithm, incorporating evolutionary thinking algorithms to construct
the WNN model. Their approach involved refining the genetic algorithm to enhance the
optimization process, resulting in more accurate predictions. In a similar vein, Chen et al.
[17] also utilized an improved genetic algorithm to optimize the WNN. By incorporating
evolutionary thinking algorithms, they were able to enhance the model’s performance in
predicting short-term traffic flow. Expanding the scope of research, Chen et al. combined
fuzzy logic, wavelet transform, neural networks, and heuristic algorithms to detect traffic
data trends and patterns. This approach allowed for a more comprehensive analysis of
the data, leading to improved predictive capabilities. Another innovative approach was
proposed by Kim and Hong [18]. They developed a hybrid mode identification model that
incorporated Gaussian hybrid mode clustering and artificial neural networks. This com-
bination enabled more accurate traffic flow predictions by considering both the specific
traffic patterns and the overall flow dynamics.

Taking a different perspective, Chen et al. [19] utilized an improved TSA to optimize
the wavelet neural network parameters. They found that this approach resulted in more
robust and effective model training, leading to improved prediction performance. In an
effort to continuously ienhance the accuracy of the prediction, Du et al. [20] applied
the whale optimization algorithm to optimize the WNN for short-term traffic flow pre-
diction. By leveraging the inherent characteristics of whale behavior, they were able to
enhance the model’s ability to adapt and achieve better prediction accuracy. Overall, the
past decade has witnessed significant advancements in short-term traffic flow prediction
using WNN. Researchers have focused on refining data processing methods, optimizing
parameters through advanced intelligent algorithms, and employing novel models such as
hybrid modes and optimized algorithms. These collective efforts have yielded promising
results, demonstrating the feasibility and practical value of utilizing improved intelligent
algorithms to optimize wavelet neural networks for short-term traffic flow prediction.

1.2. Motivation and contribution. Traffic flow prediction is crucial for urban traffic
management and planning, as it enables authorities to develop effective strategies for
reducing congestion and vehicle emissions. However, accurately predicting traffic flow in
the short term poses a significant challenge. Therefore, finding an efficient and accurate
method for prediction has be a current research emphasis in transportation, considering
the limitations of traditional prediction methods.

This thesis aims to address this challenge by proposing a new method for short-term
traffic flow prediction. The proposed method is based on optimizing the WNN using the
TSA. The key contributions of this study are as follows:
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(1) Introducing the tunicate swarm algorithm: the tunicate swarm algorithm is an
optimization algorithm with global search ability and fast convergence characteristics.
TSA can well simulate the flexible adjustment ability of biological groups. Individuals in
TSA can communicate through simple vision and contact perception to explore the best
solution together. This is consistent with the natural distributed cooperation mode of
biological groups. The application of the TSA to the wavelet neural network is effective
in optimizing network weights and thresholds, leading to improved accuracy and stability
in prediction.

(2) Merging subband filtering scrutiny and neural network: wavelet analysis effectively
captures spatiotemporal features in traffic flow data, and combining it with neural net-
work can fully explore the nonlinear relationship in the data and improve the model’s
performance.

(3) Experimental validation and performance evaluation: the effectiveness and superi-
ority of this approach is validated by conducting experiments on actual traffic flow data.
Meanwhile, Various evaluation indexes are utilized to quantitatively analyze the predic-
tion outcomes and evaluate the precision and dependability of the prediction model.

2. Relevant theoretical analysis.

2.1. Tunicate swarm algorithm. The TSA is a global search algorithm influenced by
the foraging conduct of tunicate animals [20, 21]. As a kind of animal that moves in
the ocean with fluid jet propulsion, tunicate swarm have the ability to forage in the
deep sea. But as the exact food location remains unknown, in the pre-foraging stage,
tunicate swarm use individual fetching from the surrounding seawater, generating jet
propulsion through the atrial siphon, which migrates to forage with the help of the strong
propulsive force. Since most of the periplasmic animals are only a few millimeters in size,
they often use the gelatinous perithecium to connect with each other in the late stage
of food searching and use a light blue-green light to send out signals to obtain food in
a clustered manner. Inspired by the foraging behavior of tunicate swarm, the tunicate
swarm algorithm adopts two strategies for modeling: jet propulsion and group behavior, in
which the jet propulsion phase is mainly divided into three parts: avoiding conflicts among
searching individuals, moving to the optimal searchingneighbors, and converging to the
optimal searching individuals. The group behavior is mainly for updating the positions of
the optimal searching individuals. In the iterative search process, the bagged individual
represents the possible solution to the optimization issue, and the food represents the
optimal solution of the problem [23,24,25].

2.1.1. Mathematical model of the TSA. The tunicate swarm use the vector C⃗ to compute
a new search direction in order to avoid search individual conflicts during jet propulsion
movement:

C⃗ =
A⃗

B
(1)

A⃗ = c2 + c3 − T⃗ (2)

T⃗ = 2 · c1 (3)

where A⃗ is the gravitational force; T⃗ denotes deep-sea horizontal convection; c1, c2, and
c3 are random numbers ranging from 0 to 1, which denotes the interaction force between
individuals. The computational expression is:

B = |Ymin + c1(Ymax − Ymin)| (4)



Optimized WNN on TSA for Traffic Flow Prediction 303

where Ymin and Ymax denote the minimum and maximum values of the initial interactions,
which generally take the minimum value of 1 and the maximum value of 4.

After effectively avoiding the search conflict, the encapsulated individual will move
towards the optimal search neighbor and use it as a guide to calculate the search dis-
tance [26, 27]:

PDi = |xf
best − rand · xf

i | (5)

where t denotes the current iteration. xbest represents the food’s location, xf
i represents

the position of the searching individual i at the t-th iteration, and rand denotes a random
number that meets [0-1] uniform distribution.

Then, each searching individual gradually approaches the optimal individual position,
i.e:

xf+1
i =

{
xf
best + A⃗ · PDi, q ≥ 0.5

xf
best − A⃗ · PDi, q < 0.5

(6)

where q is a random value between 0 and 1, and xf
i denotes the position of the updated

search individual.
After avoiding individual conflicts and calculating the distance between the location of

the encapsulated individual and the food source, each searching individual adopts a group
behavior to encircle towards the food source. For better mathematical modeling of the
group row of the encapsulated individual, the group behavior is expressed as follows by
saving the position information of the first two best searching individuals to update the
position of the other searching individuals [28].

xt+1
i =

xt
i + xt+1

i

2 + c1
(7)

2.1.2. Pseudo-code for the TSA. Next, we will introduce the pseudocode of our proposed
algorithm, which is shown as Algorithm 1. The algorithm process is shown in Figure 1.
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Algorithm 1 TSA

Input: number of population of pouch animals, n
Output: optimal value

1: begin
2: Initialize the population, set algorithm parameters, a, g, f,m, and maximum number

of iterations, etc;
3: Calculate the fitness function values for each search individual;
4: Obtain the best solution by evaluating the fitness score of each pocket animal indi-

vidual;
5: while (t < maximum number of iterations) do
6: for i = 1 to n do
7: Update a, g, f,m;
8: Calculate using Equation (5);
9: if rand ≤ 0.5 then

10: xt+1
i = x′

best + A⃗ · PDt
i

11: else
12: xt+1

i = x′
best − A⃗ · PDt

i

13: end if
14: Calculate the final position of the pouch animal based on Equation (7);
15: end for
16: For pouch individuals outside the search space range, perform boundary handling;
17: Compute the fitness for each search entity and determine the optimal solution

based on their respective fitness scores.
18: t = t+ 1;
19: end while
20: Output the optimal solution;
21: End

2.2. Wavelet Neural Network Predictive Modeling. Wavelet Neural Networks (WNN)
were originally proposed by the famous French information science research institute [29],
and can be classified into two categories: one is the loose fusion of wavelet analysis and
neural network, operating independently of each other. Network to complete the func-
tion of identification or classification; another type of tight combination, this approach
involves using the wavelet function serving as the activation function for the neural net-
work’s hidden layer nodes. It harnesses the benefits of wavelet analysis while aiding in
network initialization and parameter selection, but also according to the needs of the free
choice of the appropriate wavelet function [30, 31], this paper adopts the tight type of
WNN.

In Figure 2, the compact WNN structure is illustrated, with Φ(x) denoting the wavelet
basis.

The relevant formulas for calculating wavelet neural networks are as follows:
(1) The input signal undergoes forward propagation, resulting in the computation of

the WNN output value.
The output hv of the hidden layer is calculated as follows.

hv = h

(∑n
i=1wivxi − bv

av

)
, v = 1, 2, . . . , n (8)

where bv indicate the wavelet basis function translation factor, av indicate the scaling
factor of the wavelet basis function, and hv indicate the wavelet basis.



Optimized WNN on TSA for Traffic Flow Prediction 305

Figure 1. Flowchart of the TSA

Figure 2. Structure diagram of neural network model

The output yk of the network layer is computed as:
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yk =
n∑

v=1

wvkhv, k = 1, 2, . . . ,m (9)

The error between the output of the WNN and the target output is determined as
follows:

ek = yik − yk (10)

The error metric function is:

E =
1

2
e2k (11)

(2) The error signal is propagated backwards, and the parameters are adjusted accord-
ingly using the algorithm, and the weights and wavelet factors of the WNN are adjusted
according to the E-value by the following equation:

w
(d+1)
ij = w

(d)
ij +∆w

(d+1)
ij (12)

w
(d+1)
jk = w

(d)
jk +∆w

(d+1)
jk (13)

a
(d+1)
j = a

(d)
j +∆a

(d+1)
j (14)

b
(d+1)
j = b

(d)
j +∆b

(d+1)
j (15)

where d is the number of training sessions and the adjustment is calculated as:

∆w
(d+1)
ij = −η

∂E

∂w
(d)
ij

(16)

∆w
(d+1)
jk = −η

∂E

∂w
(d)
jk

(17)

∆a
(d+1)
j = −η

∂E

∂a
(d)
j

(18)

∆b
(d+1)
j = −η

∂E

∂b
(d)
j

(19)

where η is the learning rate.
Aiming at the shortcomings and wavelet factor in the training process of slow astrin-

gent speed, the algorithm is improved, and the improved weights and wavelet factor are
calculated as:

w
(d+1)
iv = w

(d)
iv +∆w

(d+1)
iv + α(w

(d)
iv − w

(d−1)
iv ) (20)

w
(d+1)
vk = w

(d)
vk +∆w

(d+1)
vk + α(w

(d)
vk − w

(d−1)
vk ) (21)

a(d+1)
v = a(d)v +∆a(d+1)

v + α(a(d)v − a(d−1)
v ) (22)

b(d+1)
v = b(d)v +∆b(d+1)

v + α(b(d)v − b(d−1)
v ) (23)

where α is the momentum factor, α ∈ [0, 1].
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3. Short-term traffic flow prediction based on PPA-WNN.

3.1. Description of experimental data. A part of the dataset used in this paper
comes from the Data Research Laboratory at the University of Minnesota Duluth [31],
where all the data are collected by the Twin Cities Traffic Management Center through
more than 4,500 loop detectors on the Twin Cities Telluride Highway. The other part
is derived from PeMS, the California Transportation Performance Measurement System.
During the experiment, the initial two-thirds of each dataset are utilized for training,
while the remaining portion is designated for testing. Since the weights and the scaling
and translation factors of the WNN are assigned initial values in each run, the prediction
results will have some volatility. In this paper, 10 runs of each data set are averaged as
the final prediction results, and simulation experiments are conducted on the data sets.

3.2. Experimental evaluation indicators. To facilitate a fair comparison of short-
term traffic flow prediction effectiveness, this study presents commonly used evaluation
metrics in the field, including MAPE, MAE, and RMSE.

MAPE:

MAPE =
1

m

m∑
i=1

∣∣∣∣ai − âi
ai

∣∣∣∣× 100% (24)

MAE:

MAE =
1

m

m∑
i=1

|ai − âi| (25)

RMSE:

RMSE =

√√√√ 1

m

m∑
i=1

(ai − âi)2 (26)

Where, ai represents the prophesied input magnitude of the WNN at t, and âi denotes
the practical magnitude of the traffic flow at t. Among the above evaluation indexes, the
smaller values of MAPE and RMSE represent the smaller error, i.e., the prophesied value
of short-time traffic flow is closer to the actual value of traffic flow.

3.3. Algorithm flow of TSA-WNN. TSA is easy to be used in complex dynamic
environments. Through the immediate response and adjustment between individuals,
TSA-WNN algorithm can better adapt to the changes of the environment and find the
real-time optimal solution. This is very advantageous for scenes that need to process a
large amount of information in real time. The flow process of TSA-WNN is shown as
follows:

1) Data preprocessing. Repair of abnormal data, wavelet noise reduction phase space
reconstruction, and normalization are performed on the raw data.

2) Integrate sample data and divide it into training and testing sets.
3) Initialization of WNN parameters and parameters of the swarm algorithm.
4) Optimization of weights and wavelet factors by the swarm algorithm.
5) Assigning the optimized weights and wavelet factors to the network.
6) Wavelet neural network training, calculate the network output and error value, and

adjust the weights and wavelet factors.
7) Input test samples for prediction.
8) Calculate the evaluation index and give the prediction results.
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3.4. Experimental results and analysis. The experimental model environment is
MATLAB2012a. The relevant parameters of the wavelet neural network are set as follows:
wavelet neural network weights, translation factors, and expansion factors are generated
randomly assigned in accordance with the normal distribution. 958 groups of training
samples, 482 groups of test samples, the maximum training count iterations is set at
100, with a minimum error value of 1/10000, and the weight learning rate is 0.01, while
the learning rates for translation factors and expansion factors are both set at 0.001.
Additionally, the momentum factor is specified as 0.3.

Figure 3 shows the effectiveness of our suggested model. Figure 4 shows the error
diagram of our proposed model.

Figure 3. PPA-WNN based short-time traffic flow prediction effect diagram

Figure 4. PPA-WNN based short-term traffic flow prediction error map

As observed in Figure 3 and Figure 4, the prediction outcomes and trends based on
PPA-WNN are similar to the real values, the fluctuation of the prediction model error is
small, and the forecast accuracy of the experimental data at every moment is good, which
proves that our model is effective.

To demonstrate the reliability of the PPA-WNN-based short-term traffic flow prediction
model in our study, Table 1 and Table 2 present the simulation results of WNN-based and
PPA-WNN-based short-term traffic flow predictions for five data sets, and the average of
10 runs for each data set is taken as the most final prediction result.
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Table 1. Performance results of WNN-based short-term traffic flow prediction

Dataset MAPE MAE RMSE
Dataset1 0.122 1.931 2.789
Dataset2 0.505 2.054 3.152
Dataset3 0.108 10.198 15.100
Dataset4 0.074 1.443 1.949
Dataset5 0.040 12.006 14.160

Table 2. Performance results of short-term traffic flow prediction based on PPA-
WNN

Dataset MAPE MAE RMSE
Dataset1 0.061 1.331 2.031
Dataset2 0.440 2.083 3.167
Dataset3 0.081 9.256 12.911
Dataset4 0.053 1.088 1.484
Dataset5 0.033 9.873 12.144

Upon comparing Table 1 and Table 2, it is evident that across all datasets, the three er-
ror values have been decreased to some degree, indicating that the wavelet neural network
leveraging thetunicate swarm algorithm outperforms in short-term traffic flow prediction.

4. Summary. This thesis centers on addressing the issue of short-term traffic flow pre-
diction in the field of urban transportation, and proposes a new prediction model by
explaining the optimization technique for wavelet neural networks bytunicate swarm al-
gorithm. The motivation behind this article is traditional traffic flow prediction methods
have certain limitations, so there is a need to find an efficient and accurate prediction
method to enhance accuracy and stability of traffic flow scenario. This thesis integrates
wavelet analysis and neural networks by employing wavelet analysis to derive spatio-
temporal patterns from traffic flow data, which are inputted into the neural network
model, so as to fully explore the non-linearity in the data. Then, the weights and wavelet
factors of the network are optimized by being tunicate group algorithm to enhance the
precision and stability of the forecast model. The experimental results demonstrate that
the wavelet neural network method optimized using the tunicate swarm algorithm, as
proposed in our study, exhibits high accuracy and stability in the prediction, which has
obvious advantages over the traditional method. By merging wavelet analysis and neural
networks and optimizing the model with the TSA, this method notably enhances the
precision and stability of traffic flow forecast. This will play a positive role in improving
urban traffic management and planning, and has important practical application value.

REFERENCES

[1] P. G. Luan, and N. T. Thinh, “Hybrid genetic algorithm based smooth global-path planning for a
mobile robot,” Mechanics Based Design of Structures and Machines, vol. 51, no. 3, pp. 1758-1774,
2023.

[2] A. Miglani, and N. Kumar, “Deep learning models for traffic flow prediction in autonomous vehicles:
A review, solutions, and challenges,” Vehicular Communications, vol. 20, p. 100184, 2019.

[3] K. Y. Chan, T. S. Dillon, and E. Chang, “An intelligent particle swarm optimization for short-term
traffic flow forecasting using on-road sensor systems,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 10, pp. 4714-4725, 2012.

[4] T. Pamu la, “Road traffic parameters prediction in urban traffic management systems using neural
networks,” Transport Problems, vol. 6, no. 3, pp. 123-128, 2011.



310 J.-F. Li, Z.-W. Li and A. Fu

[5] Y.-J. Kim, and J.-S. Hong, “Urban traffic flow prediction system using a multifactor pattern recogni-
tion model,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2744-2755,
2015.

[6] Y. Gu, W. Lu, X. Xu, L. Qin, Z. Shao, and H. Zhang, “An improved Bayesian combination model for
short-term traffic prediction with deep learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 3, pp. 1332-1342, 2019.

[7] X. Jiang, and H. Adeli, “Dynamic wavelet neural network model for traffic flow forecasting,” Journal
of Transportation Engineering, vol. 131, no. 10, pp. 771-779, 2005.

[8] R. Ravish, and S. R. Swamy, “Intelligent traffic management: A review of challenges, solutions, and
future perspectives,” Transport and Telecommunication Journal, vol. 22, no. 2, pp. 163-182, 2021.

[9] M. Saleem, S. Abbas, T. M. Ghazal, M. A. Khan, N. Sahawneh, and M. Ahmad, “Smart cities:
Fusion-based intelligent traffic congestion control system for vehicular networks using machine learn-
ing techniques,” Egyptian Informatics Journal, vol. 23, no. 3, pp. 417-426, 2022.

[10] W. Hu, L. Yan, K. Liu, and H. Wang, “A short-term traffic flow forecasting method based on the
hybrid PSO-SVR,” Neural Processing Letters, vol. 43, pp. 155-172, 2016.

[11] K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, “Neural-network-based models for short-term
traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm,”
IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 644-654, 2011.

[12] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran, “Short-term traffic prediction based on dynamic
tensor completion,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 8, pp.
2123-2133, 2016.

[13] A. Cheng, X. Jiang, Y. Li, C. Zhang, and H. Zhu, “Multiple sources and multiple measures based
traffic flow prediction using the chaos theory and support vector regression method,” Physica A:
Statistical Mechanics and its Applications, vol. 466, pp. 422-434, 2017.

[14] H.-J. Yang, and X. Hu, “Wavelet neural network with improved genetic algorithm for traffic flow
time series prediction,” Optik, vol. 127, no. 19, pp. 8103-8110, 2016.

[15] K. Y. Chan, T. S. Dillon, and E. Chang, “An intelligent particle swarm optimization for short-term
traffic flow forecasting using on-road sensor systems,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 10, pp. 4714-4725, 2012.

[16] L. Xu, X. Du, and B. Wang, “Short-term traffic flow prediction model of wavelet neural network
based on mind evolutionary algorithm,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 32, no. 12, p. 1850041, 2018.

[17] H.-J. Yang, and X. Hu, “Wavelet neural network with improved genetic algorithm for traffic flow
time series prediction,” Optik, vol. 127, no. 19, pp. 8103-8110, 2016.

[18] Y.-J. Kim, and J.-S. Hong, “Urban traffic flow prediction system using a multifactor pattern recogni-
tion model,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2744-2755,
2015.

[19] Q. Chen, Y. Song, and J. Zhao, “Short-term traffic flow prediction based on improved wavelet neural
network,” Neural Computing and Applications, vol. 33, pp. 8181-8190, 2021.

[20] W. Du, Q. Zhang, Y. Chen, and Z. Ye, “An urban short-term traffic flow prediction model based
on wavelet neural network with improved whale optimization algorithm,” Sustainable Cities and
Society, vol. 69, p. 102858, 2021.

[21] T.-Y. Wu, H. Li, S. Kumari, and C.-M. Chen, “A Spectral Convolutional Neural Network Model
Based on Adaptive Fick’s Law for Hyperspectral Image Classification,” Computers, Materials &
Continua, vol. 79, no. 1, pp. 19-46, 2024.

[22] T.-Y. Wu, A. Shao, and J.-S. Pan, “Ctoa: toward a chaotic-based tumbleweed optimization algo-
rithm,” Mathematics, vol. 11, no. 10, p. 2339, 2023.

[23] T.-Y. Wu, H. Li, and S.-C. Chu, “CPPE: An Improved Phasmatodea Population Evolution Algo-
rithm with Chaotic Maps,” Mathematics, vol. 11, no. 9, p. 1977, 2023.

[24] A. Arabali, M. Khajehzadeh, S. Keawsawasvong, A. H. Mohammed, and B. Khan, “An adaptive
tunicate swarm algorithm for optimization of shallow foundation,” IEEE Access, vol. 10, pp. 39204-
39219, 2022.

[25] F. S. Gharehchopogh, “An improved tunicate swarm algorithm with best-random mutation strategy
for global optimization problems,” Journal of Bionic Engineering, vol. 19, no. 4, pp. 1177-1202, 2022.

[26] Y. Cui, R. Shi, and J. Dong, “CLTSA: A Novel Tunicate Swarm Algorithm Based on Chaotic-Lévy
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