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Abstract. Basketball is a high-intensity sport that often comes with the risk of injury.
By monitoring athletes’ movements in real time, incorrect postures or movement pat-
terns can be detected early, thus helping to prevent sports-related injuries. However, the
human movements embodied in basketball are complex, leading to the problem of recogni-
tion difficulties. Although deep learning-based action recognition methods have achieved
better results, there are still some problems to be optimised, such as how to effectively
extract spatio-temporal information in the video. Therefore, a basketball sports gesture
recognition algorithm based on recurrent deep learning model is proposed. Firstly, in
order to fully exploit the stable spatio-temporal optical flow features in the continuous
moment observation data, a bidirectional recurrent convolutional neural network model
is proposed. The internal structures of the forward and backward recurrent convolutional
memory modules are similar, and both of them include three gate structures, namely,
the forgetting gate branch, the memory gate branch and the output gate branch. Then,
in order to strengthen the connection between spatio-temporal features in the feature ex-
traction process, and to effectively extract the short-range spatio-temporal information
in the video, a motion excitation module is proposed and embedded in the bidirectional
recurrent convolutional neural network model, so as to stimulate the motion-sensitive
channels. The simulation results of eight common postures in basketball show that the
average recognition accuracy of the bidirectional recurrent convolutional neural network
model is 0.983, which meets the requirements of practical applications.
Keywords: Basketball video; pose recognition; recurrent neural networks; motion exci-
tation; optical flow features

1. Introduction. Posture recognition in basketball can help coaches and athletes to
assess and improve their skill level [1, 2]. By analysing and recognising athletes’ postures
and movements, their technical weaknesses and room for improvement can be detected.
This helps to provide individualised training advice and feedback to help athletes improve
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their skill levels. In addition, basketball posture recognition can be used to analyse
athletes’ performance and team tactics during a game [3]. By recognising and tracking
players’ positions, movements and postures, rich game data and statistics can be provided.

Although human pose recognition techniques have been better developed, basketball
pose recognition has some special challenges and requirements compared to other human
pose recognition. Basketball is a fast and high-velocity sport where players’ movements
and postures change very rapidly [4, 5]. This is a challenge for pose recognition algorithms
because the player’s pose needs to be accurately captured and recognised within a short
period of time. Motion recognition algorithms need to be well real-time and efficient to
cope with fast movements and rapidly changing scenarios. Basketball involves a variety of
different movements and techniques such as shooting, dribbling, passing, and capping [6].
Each action has its own unique posture and characteristics. Therefore, basketball pose
recognition requires the ability to understand and recognise different movements and
techniques. This may require training using deep learning models and large-scale datasets
to capture and learn the nuances of movements. Basketball games are usually played in
complex scenarios such as courts, spectators, and baskets [7]. These background factors
may interfere with pose recognition, making it difficult for the algorithms to accurately
analyse and recognise players’ poses. Therefore, there is a need to use algorithms and
techniques adapted to complex scenarios to eliminate background interference and improve
the accuracy of pose recognition.

Deep learning models can learn advanced feature representations through multi-layer
neural networks. In basketball stance recognition, these features can capture the nuances
of movements and key poses of athletes [8, 9]. Compared to traditional manual feature
extraction methods, deep learning can automatically learn richer and more representa-
tive features from raw data, improving the accuracy of pose recognition [10]. Basketball
involves temporally and spatially complex movements. Deep learning models, such as
Recurrent Neural Networks (RNN) [11] and Convolutional Neural Networks (CNN) [12],
have powerful spatio-temporal modelling capabilities. RNNs capture the temporal depen-
dencies of the action sequences, while CNNs efficiently process the spatial features in the
video frames. This enables deep learning models to accurately model and analyse move-
ments and poses in basketball. Therefore, the aim of this study is to capture the subtle
differences of athletes’ movements in basketball video recognition through deep learning
models, so as to accurately identify and analyse athletes’ poses and provide accurate
technical feedback to coaches and athletes.

1.1. Related work. Deep learning-based human gesture recognition is an active research
area that has made significant progress [13, 14]. Deep learning-based action recognition is
a highly efficient feature extraction and classification method that automatically extracts
and classifies features from videos by designing a neural network model that establishes
a hierarchical relationship between input and output data.

Most of the mainstream methods at this stage are based on convolutional neural net-
works, e.g., VGG [15], ResNet [16], etc., to extract image features, combined with a target
detection network for keypoint detection. Few researchers use end-to-end pose estimation
models such as CPM [17], Hourglass [18] etc. Simonyan and Zisserman [19] proposed an
approach that uses two parallel CNNs to handle the task of video action recognition. One
CNN is dedicated to spatial information and the other CNN handles temporal informa-
tion. The outputs of the two CNNs are fused together for final action classification. The
model achieves good performance on multiple action recognition datasets. This design of
two CNNs allows the model to utilise both spatial and temporal information to better
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capture the context and dynamics of actions. However, due to the use of two indepen-
dent CNNs, the model is computationally expensive and requires more parameters and
computational resources. Zhang et al. [20] proposed an action recognition method based
on two parallel CNNs and introduced optical flow information to extract temporal infor-
mation. By training an independent CNN on the optical flow image and fusing it with a
spatial CNN to improve the action recognition performance. By introducing optical flow
information, the method is able to better capture the temporal information in the video,
which improves the performance of action recognition. In addition, the method improves
in computational efficiency because only the optical flow needs to be additionally trained
and fused instead of two completely independent CNNs. Cui et al. [21] proposed an ac-
tion segmentation and detection method based on a Time-domain Convolutional Neural
(TCN) network. The model models temporal relationships by using one-dimensional con-
volutional operations and captures features at different time scales through a hierarchical
time-domain convolutional module. The method achieves competitive performance on
action segmentation and detection tasks. Compared to traditional RNN-based methods,
the method uses 3D convolutional operations to model in the time domain, thus providing
an advantage in computational efficiency. In addition, the method is able to capture long-
term temporal relationships, which is more effective for modelling the temporal nature of
actions.

How to accurately extract the temporal and spatial information in the video is crucial
for the recognition results. Liu et al. [22] proposed an end-to-end spatial and temporal
attention model for recognising human actions from skeleton data. The spatial atten-
tion module learns the importance of different body parts and the temporal attention
module focuses on key frames. This allows precise temporal and spatial information to
be extracted. Xie et al. [23] proposed the coordinate attention mechanism, which can
efficiently model the temporal steps so that the network focuses on a few temporal steps
that are more important for the current recognition task and avoids the incorporation of
too much useless temporal information. Ou et al. [24] proposed Temporal Deformable
Residual Networks, which introduces a time-domain deformable convolutional block that
can adaptively sample the temporal information of video clips, model the deformations
in the temporal dimension, and extract the effective temporal information.

1.2. Motivation and contribution. Although the TCN network model is able to ex-
tract both spatial and temporal information, 3D-CNN is not able to efficiently extract
stable spatio-temporal optical flow features from observed sequence data [25]. In addi-
tion, although short-range temporal features of videos can be extracted using optical flow
features, the extraction of optical flow features is time-consuming and labour-intensive,
which slows down the rate of the whole network. Therefore, this work proposes an algo-
rithm for basketball sports gesture recognition based on a recurrent deep learning model.
The main innovations and contributions of this work include:

(1) A bidirectional recurrent convolutional neural network (Bi-RCNN) is proposed in
order to fully mine the stable spatio-temporal optical flow features in continuous moment
observation data. The bidirectional recurrent structure is used to mine temporal feature
information, while the 3D convolutional network is used to mine spatial feature informa-
tion. Memory cells are used to store the optical flow features, and the spatio-temporal
information cached in the memory cells is selectively retained by using an oblivion gate,
so as to achieve long-range temporal modelling of spatio-temporal optical flow features.

(2) A Motion Excitation Module (MEM) is proposed to address the low efficiency of
optical flow feature extraction. This module firstly obtains the motion features by two-
by-two differencing of the input features along the time dimension, then fully extracts
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these motion features and generates the motion-sensitive weights, and finally enhances the
motion features by stimulating the channels sensitive to the motion information through
the motion-sensitive weights.

2. Theoretical foundations of video motion recognition.

2.1. Human body posture recognition. Human gesture recognition is a computer
vision technique designed to recognise and understand the gestures, movements and action
intentions of the human body. It can be done by capturing an image or video of a human
body using devices such as cameras or depth sensors and extracting key points, posture
and movement information about the human body from it. Human body detection is
performed first in the image or video with the aim of finding the human body regions
in the image. Commonly used human body detection methods include deep learning-
based target detection algorithms such as CNN based methods. In a continuous sequence
of poses, human actions can be identified by analysing the changes in poses. Action
recognition can be done using time series models such as Hidden Markov Model (HMM),
RNN etc [26].

Basketball posture recognition can help to analyse a player’s motor skills. By capturing
and analysing a player’s posture and movements, their skill level, movement accuracy and
athletic efficiency can be assessed. By recognising the movements of basketball players,
it is possible to identify and analyse different movements. This can include movements
such as shooting, passing, dribbling, defending, rebounding, etc.

2.2. Convolutional neural networks. CNN is recognised as one of the most successful
and widely used deep learning techniques in the field of computer vision. The convo-
lutional layer is mainly used for feature extraction to learn feature representation from
matrix data and generate corresponding feature maps. The pooling layer serves to down-
sample the features to reduce the size of the features and the number of parameters. The
fully connected layer is located at the end of the network and transforms the features
previously subjected to convolution and pooling operations into the final output.

(1) Convolutional layer
The convolutional layer is the feature extraction layer in a convolutional neural network

and usually consists of multiple convolutional kernels. The convolution kernel performs
a convolution operation on the input image to generate an output feature map. Each
convolution kernel consists of multiple elements, and each convolution kernel corresponds
to a weight coefficient and a bias. The specific working principle is shown in Figure 1.

fk
l (p, q) =

∑
c

∑
x,y

ic(x, y) · ek,cl (u, v) (1)

where c represents the index of the number of channels; (x, y) represents the index of the
width and height of the input feature map, l represents the index of the number of neural
network layers; k represents the index of the convolution kernel of each convolutional
layer; (u, v) represents the indexes of the row and column coordinates of the convolution
kernel, respectively; (p, q) represents the indexes of the row and column coordinates of the
output feature map, respectively; ic(x, y) represents a single element in the input feature

map matrix; ek,cl (u, v) represents a single element in the convolution kernel.
By stacking different sizes and numbers of convolutional kernels in the network, the

convolutional layer can extract features of different levels and complexity in the image,
thus achieving effective modelling of the image.

(2) Pooling layer
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Figure 1. 2D Convolution Operation Schematic

Pooling operation is a special operation of convolutional neural networks used to ex-
tract key information in a region usually appearing after the convolutional layer. The
pooling operation eliminates unimportant information and reduces the output features,
thus reducing the model parameters and improving the overfitting problem. The pooling
operation consists of two key variables, the pooling template and the step size.

(3) Full connectivity layer
A fully connected layer is a layer that connects every input and output neuron. A

fully connected layer is usually located at the end of a convolutional neural network and
unfolds the output of the convolutional or pooling layer into a one-dimensional vector,
which is then connected to each output neuron. The role of the fully connected layer
is to map high-dimensional features into a low-dimensional vector space and use these
features for tasks such as classification or regression. The input to a fully connected layer
is a set of feature vectors and the output is a set of labels or predictions, where each
output neuron corresponds to a category. A fully connected layer can be implemented by
a matrix multiplication and a biased addition operation.

y = f(Wx+ b) (2)

where x represents the input feature vector, W represents the weight matrix, b repre-
sents the bias vector, f is the activation function, and y represents the output vector.
(4) Activation function
In a convolutional neural network, the operations of the convolutional layer are linear

operations. By using activation functions, the nonlinear modelling ability of convolutional
neural networks can be increased. Adding an activation function after the convolutional
layer maps the output of the linear convolutional operation into a nonlinear space, improv-
ing the expressive power of the neural network and enabling it to handle more complex
pattern features and nonlinear relationships. The commonly used activation functions
are ReLU activation function, Sigmoid activation function, etc., as in Equation (3) and
Equation (4), respectively.

y =

{
x, if x ≥ 0

0, if x < 0
(3)

f(x) =
1

1 + e−x
(4)
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2.3. Deep learning-based approach for motion pose recognition. CNN models
have achieved good performance in the image domain. Therefore, some researchers have
applied CNN models to motion pose recognition tasks. However, the object of motion pose
recognition is video, which has temporal attributes compared to images. Currently, there
are three main types of deep learning-based motion pose recognition methods: dual-stream
network, 2D-CNN, and 3D-CNN. Unlike dual-stream network and 2D-CNN, 3D-CNN can
extract both spatial and temporal information in video. In the motion pose recognition
task, the 2D convolutional kernel needs to be extended into a 3D convolutional kernel, as
shown in Figure 2.

H K

K

W

L

Input feature map Output feature map

Figure 2. 3D-CNN operations

3D-CNN performs feature extraction by stacking video sequences into a cube as input
and using a 3D convolutional kernel to perform feature extraction in this cube at a specific
step size. Although this method is able to extract both spatial and temporal information,
3D-CNN is not able to extract stable spatio-temporal optical flow features in the observed
sequence data due to its ineffectiveness. Optical flow features describe the movement of
pixels in an image sequence in time. It calculates the motion vectors of pixels by analysing
the luminance changes between consecutive frames. Optical flow features can be used to
analyse the trajectory and velocity of an object or a human body.

In the motion pose recognition task, stable optical flow feature extraction is beneficial
to solve the environmental perturbation problem and greatly improves the recognition
accuracy of moving targets. This is because there is a spatio-temporal correlation be-
tween the position trajectories of human motion targets, and there is an obvious motion
vector structure in the sequence of its corresponding observation samples. At the same
time, in the dynamic environment, there is a stable feature in the optical flow signal of
the observation samples, which is related to the motion posture, and thus can provide the
human body position information. Therefore, this paper proposes to extend the discrim-
inative information by mining the stable optical flow features of consecutive frames in
dynamic environments, which greatly improves the accuracy of basketball motion posture
recognition in dynamic environments.

3. Bi-RCNN model-based gesture recognition for basketball.

3.1. Bidirectional circular convolutional network model. As mentioned above, the
traditional 3D-CNN-based motion attitude recognition method treats the observation data
as mutually independent samples and does not refine the temporal correlation features
of the observation sequence, thus failing to effectively extract the stable spatio-temporal
optical flow features in the observation sequence data, which leads to a large room for
improvement in attitude recognition performance.

The Bi-RCNN model consists of two modules, forward cyclic memory B
(t)
FW and back-

ward cyclic memory B
(t)
BW , which extract spatio-temporal features of the past and future
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moments of the observed data and store them in the memory cells C
(t)
FW and B

(t)
BW ∈ RMN

respectively , as shown in Figure 3.
It is assumed that the Bi-RCNN contains KS bi-directional cyclic convolution modules

{B(t)
FW , B

(t)
BW | ∀t = 1 : KS} connected backward and forward, i.e., the cyclic convolution

has a time length of KS. The forward loop memory module and the backward loop

memory module will loop through the input sequence of observation samples {S(t)
R | ∀t =

1 : KS}, the memory cell {c(t)FW , c
(t)
mathrmBW} and hidden state cells {h(t)

FW , h
(t)
BW} follow to

keep updating, mining, and fusing spatiotemporal features of the input sequence. The

input sequence {S(t)
R | ∀t = 1 : KS} is the KS length subsequence of the full sequence

{S(t)
R | ∀t = 1 : K}, obtained by intercepting the full sequence through a sliding window,

where K ≥ KS.
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Figure 3. Architecture of Bi-RCNN

3.1.1. Input data preprocessing. After obtaining the k-th input sequence {z(t)R , S
(t)
R | ∀t =

1 : KS} of the Bi-RCNN by intercepting {z(t)R , S
(t)
R | ∀t = 1 : K} through a sliding window

of length KS during the offline training and online recognition phases, normalisation
preprocessing is required as follows.

S
(t)
R =

S
(t)
R − Savg√

VS

(5)

z
(t)
R =

z
(t)
R − zavg√

VR

(6)

S(t)
avg = SavgU

1√
M ×M ×N

(7)

where Savg denotes the S
(t)
R normalisation centre; zavg denotes the z

(t)
R normalisation

centre; VS and VR denote the normalisation scales of S
(t)
R and z

(t)
R , respectively.

The internal structure of the forward cyclic convolutional memory and the backward
cyclic convolutional memory modules are similar, and both of them include three gate
structures, namely, the forgetting gate branch, the memory gate branch, and the output
gate branch.
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3.1.2. Oblivion gate branching. In the forward cyclic memory module B
(t)
FW, the forgetting

gate generates the weight vector w
(t)
FW ∈ IMN by fusing the hidden state information h

(t−1)
FW

at the past time and the observed information z
(t)
R at the present time, in order to assign

weights to the historical memory information c
(t−1)
FW . Let g

(t)
FW ∈ I2MN be the input to the

forgetting gate in the forward memory module at time t, as follows:

g
(t)
FW = vec

[
h
(t−1)
FW , z

(t)
R

]
(8)

In the backward cyclic memory module B
(t)
BW, the forgetting gate fuses the hidden state

information h
(t+1)
BW at a future moment with the observation information z

(t)
R at the current

moment, and its input g
(t)
BW ∈ I2MN is determined as follows:

g
(t)
BW = vec

[
h
(t+1)
BW , z

(t)
R

]
(9)

At the first estimation moment, the hidden state h
(0)
FW = 0 of the forward module and

h
(Ks+1)
BW = 0 of the backward module are initialised. The hidden state cell information

h
(t−1)
FW is spliced with the observed data according to Equation (9), and after a fully

connected layer, the forgetful gate coefficients w
(t)
FW are obtained.

This forgetting coefficient w
(t)
FW is used to retain and discard memory cell information

(through the effect of assignment) when updating it. Let WFG
FW ∈ I2MN×MN and dFGFW ∈

IMN represent the weight parameters and bias vectors (parameters to be trained) of
the fully connected network in the forward cyclic forgetting gate respectively, then the
forgetting coefficients at moment t in the forward looping module are expressed as follows:

w
(t)
FW = sigmoid

(
WFG

FWg
(t)
FW + dFGFW

)
(10)

where sigmoid is the activation function.

ωFG
FW = vectorize

[
WFG

FW

]
(11)

where vectorize[·] means to stack the elements of the matrix one by one into vector form.
Similarly, given the fully-connected network weights of the backward memory module

WFG
BW and its bias parameter dFGBW, the oblivious coefficients of its outputs w

(t)
BW ∈ IMN is

shown as follows.

w
(t)
BW = sigmoid

(
WFG

BWg
(t)
BW + dFGBW

)
(12)

3.1.3. Memory gate branching. Unlike existing long and short-term memory networks, the
memory gate in this paper uses 3D-CNN to enhance the extraction of sample optical flow
features. The memory gate in the forward loop module consists of JG 3D convolutional
layers and Mf fully-connected layers with width Mc, where the last layer has width MN .
It is assumed that each convolutional layer has KG convolutional kernels of Mc ×Nc ×

Kc. The activation function of the fully-connected layer is ReLU. The input data of the
memory gate first goes into the 3D convolutional network to mine its spatial features, and
then feeds into the fully-connected layer to extract the cluster structure of the optical flow
features output in the last fully-connected layer serves as the present moment memory

information. Let the current moment forward memory gate input be R
(t)
FW, then A

(t)
FW

denotes the output of the 3D-CNN as follows:

A
(t)
FW = cnn

(
η
(t)
FW, R

(t)
FW

)
(13)
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where cnn(·) denotes the convolutional layer function and η
(t)
FW represents the MG convo-

lutional kernels.
The spatial feature tensor extracted by the CNN will be arranged into vectors and input

into the fully connected layer for fusion. The neural network structure of the memory gate
of the backward loop module is the same as that in the forward loop module described
above. Similarly, given the parameters of convolution kernel ηBW, fully connected network
weights ωMR

FW and bias vectors dMR
FW of the convolution kernel of the backward loop, the 3D-

CNN outputs dMR
FW are obtained successively. The 3D-CNN output A

(t)
BW and the memory

gate output X
(t)
BW are obtained successively.

3.1.4. Output gate branching. The output gate branch is similar to the forgetting gate,
where the hidden state information is spliced with the observation information and then
passed through a single fully-connected layer to get the output of the output gate. The

input to the output gate of the forward loop module is g
(t)
FW, which is given in Equation

(8).
Let WHD

FW and dHD
FW denote the weight parameter and the bias vector in the forward

looping oblivious gate (the parameters to be trained), respectively, then the output gate
state in the forward looping module is expressed as:

e
(t)
FW = sigmoid

(
WHD

FWg
(t)
FW + dHD

FW

)
(14)

Let ωHD
FW denote the vector form of its fully connected network weights. Similarly, given

the fully connected network weights of the output gate of the backward looping module

WHD
BW and its bias parameter dHD

BW ∈ IMN , the output gate state e
(t)
BW can be obtained.

e
(t)
BW = sigmoid

(
WHD

BWg
(t)
BW + dHD

BW

)
(15)

In the forward loop module, the historical memory c
(t−1)
FW is assigned and inherited by

the forgetting gate, which then fuses it with the current observation data X
(t)
FW to create

a new feature c
(t)
FW, which is stored in the memory cell.

c
(t)
FW = w

(t)
FW ⊙ c

(t−1)
FW +X

(t)
FW (16)

where ⊙ denotes the Hadamard product.

3.2. Motion excitation module. For short-range temporal modelling, the most clas-
sical approach is the dual-stream network. Dual-stream networks use the optical flow
information between two consecutive frames to model the temporal information in a
video. Although it is possible to extract short-range temporal features of the video us-
ing optical flow features, the extraction of optical flow features is time-consuming and
labour-intensive, which slows down the rate of the whole network.

To solve the above problem, a Motion Excitation Module (MEM) is proposed. The
module firstly obtains the motion features by two-by-two differencing of the input fea-
tures along the time dimension, then fully extracts these motion features and gener-
ates motion-sensitive weights, and finally enhances the motion features by stimulating
the channels that are sensitive to the motion information through the motion-sensitive
weights. The MEM module extends the short-range temporal modelling from calculating
the pixel-level differences to the feature-level differences. Given that different channels
pay different attention to different information, some channels pay more attention to the
static information related to the background, and others pay more attention to the dy-
namic information of the object changing between frames. This module enhances the
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motion-sensitive information in the original features by extracting feature-level motion
differences between neighbouring frames to obtain motion-sensitive weights.

Given an input feature X, X ∈ RN×T×C×H×W , where N stands for the batch size, T
stands for the time dimension, C stands for the feature channel dimension, and H and
W stand for the dimensions of the feature map. In order to improve the efficiency of the
whole module, the MEM module first reduces the number of feature channels by r times
(r = 16) using a 1× 1 2D convolutional layer as follows:

Xr = convr ∗X,Xr ∈ RN×T×C/r×H×W (17)

where Xr represents the feature after channel dimensionality reduction, convr represents
the 2D convolution layer of 1× 1, and ∗ represents the convolution operation.

Then, the MEMmodule computes the difference between the neighbouring feature maps
Xr(t) and Xr(t+1) to obtain the feature-level motion information at time t. Specifically,
instead of directly differencing the two features, the MEM module performs a channel
transform on Xr(t + 1) using a 2D channel convolution. After that, the transformed
feature is differentiated from Xr(t) to obtain the feature-level motion information H(t)
at time t.

H(t) = convc ∗Xr(t+ 1)−Xr(t), H(t) ∈ RN×C/r×H×W (18)

where convc represents the 2D channel convolution of 3× 3.
After differencing all neighbouring frames, the motion information H(t) at moment T

is set to 0 to obtain the motion information at all moments. All motion information in the
time dimension is superimposed along the channel dimension [H(1), . . . , H(T )], to obtain
the motion feature H. The MEM module then uses a global average pooling operation to
compress the spatial dimension to 1× 1, reducing the computational cost and obtaining
the global motion information Hs.

Hs = pool(H), Hs ∈ RN×T×C/r×1×1 (19)

where Hs aggregates the global motion information and pool denotes the global average
pooling.

Then, the motion information was fully extracted through a fully connected layer.

Hf = Fc(Hs), Hf ∈ RN×T×C/r×1×1 (20)

After these operations, the number of feature channels is restored to C using a 1 × 1
2D convolutional layer, and the final motion-sensitive weights can be obtained from the
sigmoid activation function.

He = convexp (Hf ) , He ∈ RN×T×C×1×1 (21)

s = sigmoid (He) , s ∈ RN×T×C×1×1 (22)

where s represents motion-sensitive weights, and convexp represents a 1× 1 2D convo-
lution.

Finally, the motion-sensitive weights s are multiplied with the corresponding channels
of the input feature X to excite the motion-sensitive channels and enhance the motion
features. However, this results in the suppression of static information in the input feature
X, which may be effective for motion recognition. To solve this problem, the MEMmodule
borrows the idea of residual networks and uses residual concatenation to preserve the static
information.

Xo = X ⊙ s+X, Xo ∈ RN×T×C×H×W (23)

where Xo denotes the output features of the MEM module.
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3.3. Flow of Bi-RCNN-based pose recognition algorithm. Based on the above
forward and backward circular convolution structure, the data processing procedure of
the Bi-RCNN-based basketball sports posture recognition algorithm can be determined.
It is assumed that the model has been trained and entered into the localisation tracking
phase. The flow of the Bi-RCNN-based basketball gesture recognition algorithm is as
follows:

(1) Initialise the memory cells and hidden state of the Bi-RCNN.

(2) For a given sequence of observation samples
{
z
(τ)
R | ∀τ = 1 : K

}
, use a sliding win-

dow of lengthKs to intercept the full sequence to obtain the subsequence
{
z
(τ)
R | ∀τ = 1 : Ks

}
.

(3) Input the subsequence
{
z
(τ)
R | ∀τ = 1 : Ks

}
into the forgetting gate, remembering

gate, and outputting gate in the forward and backward modules in turn, and finally obtain

the hidden state
{
h
(t)
FW , h

(t)
BW | ∀t = 1 : Ks

}
and the memory cell state

{
c
(t)
FW , c

(t)
BW | ∀t = 1 : Ks

}
.

(4) After using the MEM module to enhance the motion features, the estimation of the
attitude parameters of the basketball motion target is obtained through the perception
layer.

4. Simulation results and analysis.

4.1. Simulation setup. The simulation was tested for eight common postures in basket-
ball. The frame sizes of the videos were all 320× 240 (pixel). During the data acquisition
process, data acquisition was completed for each of the 8 basketball maneuvers for each
of the 20 male testers, respectively. Each movement was repeated 20 times. The total
number of samples was 6000. During the sampling process, each tester completed the
prescribed movements as required and the movement sequences were recorded by the
monitor. The statistical results of the test were stored in Table 1.

Table 1. Sample statistics for 8 postures

No. Behaviour Number of actions
1 Run 20
2 Bound 20
3 Standing dribble 20
4 Dribble 20
5 Running dribble 20
6 Shoot 20
7 Pass 20
8 Catch a ball 20

The Bi-RCNN network structure used in the simulation has a single fully connected
layer with 256 neurons and a Sigmoid activation function. The size of the convolution
kernel of a single convolutional layer is 3× 3× 3, the number of convolution kernels is 10,

and the activation function is ReLU. The dimension of the input S
(t)
R is 9 × 9 × 9. For

forward and backward loop modules, the number of 3D convolution layers of the memory
gate is JG = 2, the convolutional kernel size is 3 × 3 × 3, the number of convolutional
kernels is KG = 10, and the depth of the fully-connected layer is MF = 3, and the width
is MG = 900.
All simulations were performed using Tensorflow-GPU 2.40 on a Windows 10 system

and an NVIDIA GeForce RTX 3090 graphics card. In addition, an ablation study of the
MEM module was performed to demonstrate the effectiveness of this module.
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4.2. Recognition of motion poses. The proposed Bi-RCNN algorithm is compared
with ResNet-50 on eight postures, as shown in Figure 4.
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Figure 4. Recognition results of 8 basketball postures

It can be seen that for all the samples, the recognition accuracy of Bi-RCNN is higher
than that of ResNet-50. The recognition accuracy of Bi-RCNN ranges from 0.953-0.999
with a mean value of 0.983. The recognition accuracy of ResNet-50 ranges from 0.917-
0.984 with a mean value of 0.950. The difference in the accuracy between the two ranges
from about 0.03-0.052. On No. 3 and No. 8, the accuracy gap between the two models
is larger at 0.052 and 0.036, respectively. Overall, the Bi-RCNN model improves the
recognition accuracy compared to ResNet-50, especially on some samples, and obtains a
significant performance improvement.

4.3. Ablation experiments on MEM module. Ablation experiments were conducted
on the MEM module to verify whether embedding it within the Bi-RCNN could improve
the accuracy of motion pose recognition, as shown in Table 2.

Table 2. Ablation experiments on MEM modules

Method Frames Top-1 /% Top-5 /%
Bi-RCNN 12 18.5 42.3

Bi-RCNN+MEM 12 29.6 59.2

The Top-1 accuracy of the Bi-RCNN method is 18.5% and the Top-5 accuracy is 42.3%,
while the Top-1 accuracy of the Bi-RCNN+MEMmethod is 29.6% and the Top-5 accuracy
is 59.2%. With the same 12-frame input, the Bi-RCNN+MEM method improves the
Top-1 accuracy by 11.1% and the Top-5 accuracy by 16.9% compared with the Bi-RCNN
method. This indicates that the overall recognition accuracy is significantly improved by
adding MEM (memory module) on the basis of the same model. MEM module helps
the model to learn the short-time information of the video, and enhances the sequence
modelling ability, which improves the effect of motion gesture recognition.
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5. Conclusion. In this work, an algorithm based on the Bi-RCNN model for basketball
sports gesture recognition is proposed. In order to fully exploit the stable spatio-temporal
optical flow features in the continuous moment observation data, the bidirectional recur-
rent structure is used to mine the temporal feature information, while the 3D convolutional
network is used to mine the spatial feature information. Memory cells are used to store
the optical flow features, and the spatial and temporal information cached in the memory
cells is selectively retained by using an oblivion gate, so as to achieve the long-distance
temporal modelling of spatio-temporal optical flow features. A MEM module is pro-
posed and is embedded into the Bi-RCNN model to stimulate motion-sensitive channels.
Overall, the Bi-RCNN model improves the recognition accuracy compared to ResNet-50,
and in particular, significant performance gains are obtained on certain samples. Using
the same 12-frame input, the Bi-RCNN+MEM method improves the Top-1 accuracy by
11.1% and the Top-5 accuracy by 16.9% compared to the Bi-RCNN method. The results
of ablation experiments with the MEM module validate its effectiveness.
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