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Abstract. Session-based recommendation aims to predict the anonymous user’s next
click action based on his/her latest click sequence. Most state-of-the-art approaches use
graph neural networks to model sessions as graphs to capture dynamic transitions between
items within a session. Inspired by recent progress on hypergraph-based neural networks,
we think it is a good candidate to model the commonly related items within a session, and
it can provide a sound complement to the normal graph models. In addition, cross session
information may also be helpful. But the excessive noise introduced by other sessions
is a big challenge and is still not be well resolved by existing works. To this end, we
propose a new approach, called Multi Meta Information Fusion Graph Neural Networks
(MM-GNN) to infer user preferences for the current session in a more comprehensive
way for the anonymous sessions.We fuse information from normal graph and hypergraph
to fully exploit their capabilities of capturing sequential behavior and group intention
within a session. In order to better use cross session information, we propose a global-
level subsequent item injection module, which injects information of the most possible
subsequent item of the last item in the current session in the global scope. Besides, to
learn richer information on the hypergraph structure, we model the whole session as a
hyperedge to complement sliding windows-based hyperedges when creating the hypergraph.
We have evaluated the method on several benchmark datasets and the results show that
our method outperforms state-of-the-art methods.
Keywords: Session-based recommendation; Sequential behavior; Group intention

1. Introduction. In many cases, the rapid growth of information has brought us more
opportunities, but at the same time it has caused us to suffer from information overload.
Recommender systems play a crucial role in inferring user preferences or needs from their
historical actions such as browsing and clicking. However, in many real-world scenarios,
user profiles and long-term historical data are not available due to privacy policies or
anonymous interactions. To solve this problem, session-based recommendation (SBR) is
proposed to predict the next potential interacted items based on short-term and dynamic
user behaviors in anonymous sessions.

Over the past few years, many methods have been proposed for SBR. Earlier research
work modeled target sessions as decision Markov chains [1–4] to make the prediction from
users’ recent behavior. With the success of deep learning, many researches have focused
on using deep neural networks to mine users’ preferences. Recurrent neural networks
(RNN), gated recurrent units (GRU), and long short-term memory (LSTM) are widely
used to capture sequential correlations among items in a session.

In recent years, the rise of graph neural networks has brought new ideas for session-based
recommendation, they can model target sessions as graphs and learn complex transition
patterns between items, such as forward, backward, bidirectional and self-transitional
relationships. In SR-GNN [5], the items within a session are modeled as a graph, and the
complex transition patterns between items are learnt through graph structures. To learn
richer item representations, many researchers have constructed GNNs using cross-session
information, such as GCE-GNN [6], DAT-MDI [7] and GAG [8], which capture transitional
relationships between items within a single session or across sessions. Meanwhile, these
works mostly uses a normal graph as the main structure which takes items as nodes,
and learns transition patterns between nodes in the graph. However, if we observe the
session in a higher perspective, we can notice that in a session, there exists several group
intentions [9], each of which represents a single objective of several consecutive interactions
between the user and the system, and there also exists the phenomenon of intention
transition within a session. Taking session A in Figure 1 as an example, if we use normal
graph and only considers the transitions between each item, then the next most likely
item to be visited after the last RAM would be CPU because there already exists a
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transition from RAM to CPU. But if we observe the session in a global way, we can
discover that the first two items are mainly targeted to find a cell phone, while the last
items are aimed to assemble a computer. So if we consider the last five items as a whole,
then the next item to be visited might be a mainboard or a screen as they are parts of
a computer. To obtain a better session representation, we can resort to hypergraph to
be complementary to the normal graph structure. In hypergraph, the hyperedges are
used to connect multiple nodes to represent that these nodes are commonly related, so
as to cover richer association information. SHARE [10] was the first model to introduce
sliding window into hypergraph to resolve the session-based recommendation problem,
which capture the group intentions within a session, and achieved good result. Although
hypergraph is very effective in capturing group intentions, there are still some cases where
group intentions are not obvious, like the example of Session B in Figure 1. Obviously
it is more effective to use the normal graph to learn the item transitions. Both of above
situation are widely existed in real-world and should be paid attention to.

Figure 1. Two sessions

To overcome the above limitations and make full use of the item-level and group-level
features of sessions, we propose a graph neural network-based recommendation model
called MM-GNN which combines the hypergraph and normal graph, and can better learn
both the group intention transitions and item transitions within a session. First, we
construct a hypergraph-based module which uses sliding windows to capture the group
intentions of a session. Each window tries to capture the group intention within a certain
region, and their combination may better learn the group intentions and their transitions
in the whole session. Besides, we propose to model the whole session as a hyperedge,
which can further enrich the expressiveness of the model. To compensate the loss of se-
quential information within a session, we also incorporate a normal GNN module which is
constructed from the transitions between items and can better learn their first and higher
order transitive relationships. Finally, in order to better use cross-session information,
we build a global-level subsequent item injection module by computing the most likely
next items for the last item in the current session from a global perspective, and then the
candidate items are injected into the current session representation by a fusing function.
This strategy not only enriches our model with global cross-session information, but also
emphasize the importance of the last item and activate the position encoding in a session
in a rather simple and effective way. All above modules are fused to get the final rec-
ommendation results. Experimental results show that our proposed method outperforms
existing SBR-based methods on three widely used session recommendation datasets.
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Contribution. In this paper, we propose a new scheme for session-based recommen-
dation. The contribution of our paper can be summed up as the following four points:

(1) We effectively integrate hypergraph and normal graph, so that the advantages of
the two graph structures can complement each other.

(2) We propose to use both sliding windows and the whole session to generate the
hyperedge of a hypergraph, so that more precise group intentions and their transitions
can be learnt.

(3) We build a global-level subsequent item injection module, which can effectively
learn the subsequent item information of the last item in the current session from a global
perspective. Through the inter session collaboration mechanism, we providing richer
information for the final recommendation.

(4) We conducted extensive experiments on three real datasets and results show that
MM-GNN outperforms multiple baselines.

The rest of this paper consists of the following sections: Section 2 reviews the related
work. The proposed MM-GNN model is presented in Section 3, and experiments are
performed in Section 4. Finally, the paper is concluded in Section 5.

2. Realted work. In recent years, Session-Based Recommendation (SBR) has received
increasing attention. Session-based recommendation aims to predict the user’s next action
based only on his/her recent anonymous interactions which are regarded as a session. In
this section, we discuss the recently proposed session-based recommendation methods in
details, which can be divided into two main categories, i.e., RNN-based or GNN-based
methods.

RNN-based methods: Classical matrix decomposition methods (e.g., probabilistic ma-
trix decomposition [11] and matrix decomposition [12]) perform poorly due to limited
representation capabilities. Therefore, RNN-based approaches [13–16] received much at-
tention afterwards. The RNN-based approaches employ a loop and gated cell structure
which makes it easy to capture user preference shifts when generating session represen-
tations. GRU4REC [13] introduces RNN for the first time in session-based recommender
systems, using deep recurrent neural networks with gated recurrent units to model ses-
sion data. Inspired by the great success of Transformer [17, 18], SASRec [19] proposes a
self-attention-based recommendation method that tends to model long-term dependen-
cies on dense data and focuses on recent actions on sparse data. SINE [16] proposes a
novel sparse interest network that learns adaptively from a user’s current interests by con-
structing an overall conceptual prototype matrix. Although RNN-based recommendation
methods have gained some success, they demand huge data support and it is difficult for
RNN models to learn the precise preference of users in the case of sparse session sequences.

GNN-based methods: Graphs have more powerful expressiveness in modeling complex
structures than normal sequences, thus recent works mainly use GNN (Graph Neural
Network) to learn item representations of SBR by constructing a session graph. Wu et
al. [5] is the first to propose a recommendation model based on graph neural networks
(SR-GNN) to extract short-term dynamic preferences of users in a session and predict
their behaviors by establishing the transitive relationships between items through GNN.
GCE-GNN [6] achieves more accurate recommendations by constructing a global graph
and learning global co-occurrence information to complement the representation learning
of item transitions in the current session. DHCN [20] realizes the sparseness of the data in
the current session and learns inter-session information by taking each session as a node
and uses comparative learning for item nodes and session nodes. HG-GNN [21] introduces
user nodes to construct heterogeneous global graph neural network to better learn user
preference information. MGS [22] uses attribute information on the session graph and
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utilizes an attribute-aware module to construct a mirror graph, which further guides the
training process by propagating information between the session graph and the mirror
graph. STAR [23] introduces time interval to provide more precise prediction for the next
item. CORE [24] addresses the problem that session embeddings are usually not in the
same representation space as item embeddings, and designs a representation-consistent
encoder to ensure the consistency of the two representation spaces. Noting that previous
models have ignored the fact that user preference is usually driven by some factor, Disen-
GNN [25] introduces Dissociative Representation Learning (DRL) to learn independent
factor-level embeddings and to explore more fine-grained session information.

Through learning from the above fields and being inspired by other fields [26–28], we
have made new progress in our work. Firstly, we combine normal graph and hypergraph,
there are few studies combining the two, and this is the research gap we try to fill in this
work. Second, we model the whole session as a hyperedge to complement sliding windows-
based hyperedges when creating the hypergraph. Third, we introduce subsequent sessional
information from a global perspective to gain better recommendation results.

3. Methods.

3.1. Problem statement. Session-based recommendations are designed to predict a
user’s next item of interest based on his/her recently visited items. Let V = {v1, v2, ..., vm}
denotes the set of unique items in all sessions, where m = ∥V ∥ is the number of items. A
session s = {v1, ...vi, ..., vl} is defined as a sequence of items, where denotes the ith item
visited by the user in session and is the length of session . The session-based recommen-
dation model outputs the probability for each item to be selected as the next item i.e.,
ŷ = {ŷ1, ŷ2, ..., ŷm}, and top k items will be recommended to the user.

3.2. Network architecture. To obtain more comprehensive and reliable session repre-
sentations, we propose a new model called Multi Meta Information Fusion Graph Neural
Networks (MM-GNN) for session-based recommendation. MM-GNN models the session
in two forms to obtain better representations for the items and sessions, one is in the
form of the normal graph, the other is in the form of the hypergraph which is generated
by applying sliding windows on a session, and it also incorporates information of possible
subsequent items from the global perspective to better utilize cross-session information.
Figure 2 presents the architecture of MM-GNN, which consists of five main components.
1) Normal Graph-based Learning Module. It uses a GNN model on the session graph to
learn item embeddings in the current session. 2) Hypergraph-based Learning Module. It
uses a GNN model on the hypergraph to learn item and hyperedge representations bi-
directionally, i.e., from nodes to hyperedges and from hyperedges to nodes. 3) Subsequent
Item Injection Module. It learns the sequential pattern from all sessions for the last item
of the current session. 4) Fusion module. This module fuses the information learnt in the
previous modules. 5) Prediction module. It generates the predicted probability of the
recommended candidate items. Next, we will introduce these five components in detail.

3.3. Normal graph-based learning module. Let Gs denotes a session graph for ses-
sion s, the edges are the transitions between the items in session s. The vector hvi ∈ Rd

represents the initial d-dimensional embedding for item vi, where vi ∈ V .
Since the neighbors of vi in the session graph have different importance and similarities

to vi, we use the attention mechanism to learn different weights for its neighbors. The
attention coefficients can be obtained by element-wise production and nonlinear transfor-
mation:
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Figure 2. The pipeline of the proposed MM-GNN model

fij = LeakyReLU
(
aTb

(
hvi • hvj

))
(1)

Where we use LeakyReLU as the activation function, fij denotes the importance of the
node vj to the node vi, vj ∈ N s

vi
, N s

vi
is the set of the first-order neighbors of vi. ab ∈ Rd

is the weight vector, can be either of ( ain, aout, ain−out, aself ) according to different
transition directions. ain, aout, ain−out and aself are trainable weight vector. For the edge
(vi, vj), ain corresponds to the transition(edge) from vi to vj only, aout corresponds to
transition(edge) from vj to vi only, ain−out corresponds to the transition between vi and
vj in both direction, aself corresponds to the self-transition edge.
In order to make the coefficients comparable between different nodes, we normalize the

attention scores by the softmax function:

αij =
exp (fij)∑

vk∈Ns
vi
exp (fik)

(2)

The output representations of each node can be obtained by a linear combination of
the representations of its neighbor nodes, through the following formula:

hn
vi
=

∑
vj∈Ns

vi

αijhvj (3)

3.4. Hypergraph-based learning module. Hypergraph is a special type of graph
structure that extends the traditional understanding of graphs. In a normal graph, an
edge can usually only connect two nodes, which is limited in describing many complex
systems. The emergence of hypergraphs is precisely to make up for this deficiency. In
a hypergraph, an edge can connect multiple nodes without being limited by the number
of nodes, making it more flexible and accurate in describing complex relationships and
dependency structures in the real world.
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In the hypergraph-based learning module, we use the sliding windows to capture trans-
ferring group intention of a session. We set different window size to capture different
granularity of interest. For example, for a session {v1, v2, v3, v4}, we can set the windows
size to be 2 or 3, which can capture the group intention of 2 or 3 consecutive items.
For example, if the window size is set to 2, then there can be 3 hyperedges which are
e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}; if the window size is set to 3, then there can
be 2 hyperedges which are e1 = {v1, v2, v3}, e2 = {v2, v3, v4}. Besides, we have added the
whole session as a hyperedge to in the hypergraph, i.e., the length of the hyperedge is
entirely determined by the length of the session.

We learn nodes and hyperedges representations in the hypergraph through a number of
NEN blocks which contains two propagation steps with attention mechanism, i.e., node
to hyperedge propagation and hyperedge to node propagation.

(1) Node to hyperedge propagation. Among the nodes connected by one hyperedge,
some play more important roles than others as they can reveal more informative prefer-
ences contained in this window, thus they are key factors for the hyperedge representation
learning and should be paid more attention to. So when performing aggregation, we give
different weights to these nodes by using the attention mechanism to obtain the hyper-
edge feature tj. We assume that the nodes connected by the hyperedge ej can form a
cluster, which has a virtual center and can be calculated as the average value of the nodes
representations of the hyperedge, i.e., hejm = Mean (hvi | vi ∈ ej). Nodes near the cluster
center are more likely to reflect core preferences, so we consider hejm as a factor that
determines whether the current node vi is more important for hyperedge ej and use it to
calculate the node weights. Then we obtain the feature tj of hyperedge ej by the following
formula:

αji =
exp(LeakyReLU(W1

T (hejm•hvi)))∑
vx∈ej

exp(LeakyReLU(W1
T (hejm•hvx)))

(4)

tj =
∑

vx∈ej αjxhvx (5)

Where W1 ∈ Rd×1 is a trainable parameter, and • denotes the Hadamard product, αji

denotes the attention weight of hyperedge ej on node vi.
(2) Hyperedge to node. When updating the embedding of a node, we need to aggregate

the information from all the hyperedges connected to that node. Similar to the node to
hyperedge, we also use the attention mechanism to aggregate the hyperedges to obtain a
node representation h#

vi
. And we regard the average of all items contained in the current

session as hvm , which determines whether the hyperedge ej is more important for current
node vi, i.e., hvm = Mean

(
hvp | vp ∈ s

)
. Then we obtain the node feature h#

vi
by the

following formula:

βij =
exp(LeakyReLU(W2

T (hvm•tj)))∑
tx∈Evi

exp(LeakyReLU(W2
T (hvm•tx))) (6)

h#
vi

=
∑

tx∈Evi
βixtx (7)

Where W2 ∈ Rd is a trainable parameter. Evi is the set of all hyperedges to which vi
belongs in the current session, and βij denotes the attention score of node vi to hyper-edge
ej.
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Based on the above two-way propagation process, i.e., node to hyperedge propagation
and hyperedge to node propagation, we can have the hyperedge representation and node
representation as tj, h

#
vi
= NEN (hvi , tj).

Here, we let the hyperedge obtained from the whole session be ed, and its hyperedge
feature td is obtained through the above process NEN. td is used in the computation of
the final item representation, because it reflects the intention of the whole session. The
item representation is obtained by:

hh
vi
= σ

(
td • h#

vi

)
• h#

vi
+ h#

vi
(8)

Where σ is the sigmoid activation function.

3.5. Subsequent item injection module. The subsequent item injection module aims
to capture global-level sequential patterns of an item. For the current session, the last
item to some extent reflects the user’s recent interests and is a clue to the user’s current
intention, which has great relevance to the selection of the next item. The subsequent
operations on the last item in the current session in other sessions reflect more general
item relevance, so this information can be used to learn important influencing factors for
recommending the next item.

Specifically, the global graph is constructed based on the set of items in the t-hop
range of all sessions in the training set. For example, assume there are two sessions
s1 = {v1, v2, v3, v4, v5} and s2 = {v6, v7, v8, v2, v9} in the training set, when the hop range
t = 2, the subsequent items of v2 is v3, v4, v9. Since there are tens of thousands of sessions
in the training set, there will be many subsequent items for each item, and we select the
top r as the final set based on their co-occurrences. During the testing phase, we do not
dynamically update the topology of the global graph for efficiency reasons.

For the current session s, it can be represented by the subsequent items of the last item
vl. We define vx ∈ N l

subsq as a global-level possible subsequent item of the last item vl
in the current session s. We select r items N l

rsubsq from all subsequent items based the
number of co-occurrence between last item vl and its subsequent items for aggregation.

We aggregate the subsequent information from two aspects. One is to learn global-level
item representation by attention mechanism, and the other is the simple and effective
averaging strategy.

(1) Attention based. First, we compute the attention klj of last item vl on subsequent
item vj. The formula is as follows:

klj =
exp

(
W4LeakyReLU

(
W3

T
[(
hvl • hvj

)
∥ulj

]))∑
vx∈N l

rsubsq
exp (W4LeakyReLU (W3

T [(hvl • hvx) ∥ulx]))
(9)

Where || denotes concatenation operation, ulj ∈ R1 is the number of co-occurrence be-
tween last item vl and subsequent item vj, W3 ∈ R(d+1)×d, W4 ∈ R1×d are trainable
parameters.Then, we aggregate r subsequent items to obtain session representation:

Sl
a =

∑
hvx∈N l

rsubsq

klxhvx (10)

(2) Averaging based. The average subsequent information is calculated as:

Sl
avg = Mean

(
hvx | vx ∈ N l

rsubsq

)
(11)
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Ultimately, our global-level subsequent information is obtained by summing the two
outputs of attention and average:

Ssubsq = Sl
a + Sl

avg (12)

3.6. Fusion module. We fuse item representation from normal graph and hypergraph
to fully exploit sequential behavior and group intention capture capabilities. The formula
is as follow:

hf
vi
= tanh

(
W5

[
hn
vi
∥hh

vi

])
(13)

Where hf
vi
is fusion item embedding, hn

vi
is item embedding from normal graph, hh

vi
is item

embedding from hypergraph, W5 ∈ Rd×2d is a trainable parameter.
The items in a session are not equally important. Intuitively, recently selected items

can better reflect the user’s next preference. Therefore, we employ a positional mechanism
that combines the item embedding together with their positions into the session embed-
ding. We use a learnable position embedding matrix P = [p1, p2, . . . , pi, . . . , pl], Where
pi ∈ Rd is a position vector for a particular position i. The item embedding with position
encoded is obtained by concatenation node representations hf

vi
and position embedding

pl−i+1.

zi = tanh
(
W6

[
hf
vi
||pl−i+1

])
(14)

Where zi is a item embedding with position information, W6 ∈ Rd×2d is a trainable
parameter. Then the average of the current session is obtained by the averaging operation.
The formula is as follow:

s∗ =
1

l

l∑
i=1

hf
vi

(15)

Next we integrate item embedding with position information and the average of the
current session through the soft attention mechanism as weight βi for the current item vi.

βi = W T
7 σ (W8zi +W9s

∗ + b) (16)

Where W8, W9 ∈ Rd×d and W7, b ∈ Rd×1 are trainable parameters. Thus, the session
representation Snh ∈ Rd from normal graph and hypergraph is given by:

Snh =
l∑

i=1

βih
f
vi

(17)

Finally, we fused session representations from normal graph, hypergraph and subsequent
items to obtain the final session representation S.

S = Snh + Ssubsq (18)
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3.7. Prediction module. Based on the obtained session representation S, the final rec-
ommendation probability of each candidate item depends on the similarity between their
initial embedding and the current session representation, and we first use the dot product
and then apply the softmax function to obtain the output.

pi = Softmax
(
SThvi

)
(19)

Where pi denotes the probability of item vi to be selected as the next clicked item in the
current session, hvi is the initial embedding vector of vi. The loss function we define as:

L = −
m∑
i=1

yilog (pi) (20)

Where yi is the one-hot vector corresponding to the next interaction of the real user.

4. Experiments. By answering the following four key research questions, we conducted
a large number of experiments to evaluate the accuracy of the proposed MM-GNN model.

• RQ1: Does MM-GNN outperform the state-of-the-art SBR baseline in real-world
datasets?

• RQ2: Are the modules we added valid?
• RQ3: How does MM-GNN perform in different aggregation operations?
• RQ4: Does stacking multiple NEN blocks have an effect on the results?

4.1. Dataset and preprocessing. In this paper, we validate the effectiveness of the
proposed MM-GNN method on three real datasets, namely Diginetica, Tmall and Now-
playing. Diginetica dataset is from CIKM Cup 2016, consisting of typical transac-
tion data. Tmall dataset comes from IJCAI-15 competition, which contains anonymous
user’s shopping logs on Tmall online shopping platform. Nowplaying dataset comes
from [29], which describes the music listening behavior of users. Following the litera-
ture [5, 23], we preprocessed the three datasets. Specifically, sessions of length 1 and
items that occur less than 5 times are filtered out in all three datasets. The latest
data such as last week’s data is set as the test set and more earlier data are used
as the training set. Furthermore, similar to the literature [5, 14, 15], we enhanced the
dataset using the technique of data augmentation.Specifically, for a session sequence s =
{v1, v2, v3, . . . , vl}, we augment s by generating a set of sequences and their corresponding
labels ({v1} , v2) , . . . , ({v1, . . . , vi−1} , vi) , . . . , ({v1, v2, . . . , vl−1} , vl), where {v1, v2, . . . , vi−1}
is a generated sequence and the label vi is its next visited item. We trained and tested on
three publicly available datasets. The statistics of the pre-processed datasets are shown
in Table 1.

Table 1. Statistical results of datasets

Dataset Tmall Nowplaying Diginetica
all the clicks 818,479 1,367,963 982,961
train sessions 351,268 825,304 719,470
test sessions 25,898 89,824 60,858
all the items 40,728 60,417 43,097

Average length 6.69 7.42 5.12
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4.2. Evaluation metrics. We used two ranking-based metrics: P@ K and MRR@ K.
(1) P@K (Precision) is a widely used metric that indicates the probability that a real

user clicks on an item in the top K items in the recommendation list in the test set. K
is assigned as K = 20 in this paper. The formula for calculating P@ K is as follows:

P@K =
nhit

T
(21)

Where T is the number of sessions in the test set and nhit is the number of sessions that
contain real user click items.

(2) MRR@K(Mean Reciprocal Rank) is the mean reciprocal rank of the user’s real
click item position in the recommendation list. If the top K items recommended do not
include real clicked items, the value of MRR is 0 . The formula is as follows:

MRR@K =
1

T

T∑
t=1

1

Rank (vi)
(22)

Where Rank (vi) represents the ranking of the target item among the topK recommended
items.

4.3. Baseline algorithms. In order to evaluate the performance of the MM-GNNmethod,
we’ve compared it with the following representative works:

• FPMC [1]: It is a sequential model based on Markov chains.
• NARM [14]: It is the state-of-the-art RNN-based model that uses an attention mech-
anism to capture the user’s primary purpose and combines it with sequential behavior
to generate recommendations.

• STAMP [15]: It employs self-attention mechanism to enhance the performance of
session-based recommendations.

• SR-GNN [5]: A gated graph convolutional layer is applied to obtain item embedding,
and a soft attention mechanism is also used to compute session embeddings.

• GCE-GNN [6]: Two types of session graphs are constructed to capture different
levels of local and global information.

• SHARE [10]: It uses a sliding window to build a hypergraph of a single session to
capture group intentions.

• DHCN [20]: It constructs two types of hypergraphs to learn inter and intra session
information, and uses self-supervised learning to enhance session-based recommen-
dations.

• Disen-GNN [25]: It represents each item with independent factors and learns item
embeddings from the factor level.

4.4. Parameter setup. Following previous work [30], we set the embedding dimension
to be 100 and a batch size of 100. We use an Adam optimizer with an initial learning
rate of 0.001, which decays to 0.1 times the original rate after every three rounds. All
parameters are initialized using a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. In all experiments, the above parameter settings are kept consistent
across all models for a fair comparison.

4.5. Overall comparison(RQ1). Table 2 shows the experimental results for the eight
baselines and our proposed model on three real-world datasets, where the best results for
each column are highlighted in bold. It can be observed that MM-GNN achieves the best
performance on both metrics for all three datasets, which verifies the effectiveness of our
proposed method.
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Table 2. Performance comparisons between our model and the competi-
tors over three datasets

DATASET TMALL NOWPLAYING DIGINETICA
METHODS P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

FPMC 16.06 7.32 7.36 2.82 22.14 6.66
NARM 23.30 10.70 18.59 6.93 48.32 16.00
STAMP 26.47 13.36 17.66 6.88 46.42 15.13
SR-GNN 28.04 13.60 19.38 7.78 52.49 18.39
GCE-GNN 32.42 15.42 22.37 8.06 54.06 19.04
SHARE 29.14 14.42 19.72 8.14 51.41 17.24
DHCN 31.42 15.05 23.08 8.18 53.66 18.51

DISEN-GNN 31.56 15.31 22.47 8.22 53.49 18.99
MM-GNN 35.19 15.90 23.28 8.50 55.13 19.45

In traditional methods, FPMC uses the first-order Markov chains and matrix decom-
position, the results shows limited effectiveness on all three datasets, indicating that the
first-order assumption relies mainly on the independence of consecutive items is unrealis-
tic.

In deep learning-based works, neural network-based methods tend to have better perfor-
mance than traditional methods. NARM and STAMP perform well on all three datasets.
NARM not only uses RNN to model session sequences, but also uses attention mecha-
nisms on each session sequence, indicating different importance of nodes in the session.
STAMP extracts long-term interest based on the attention mechanism and takes the last
click as short-term interest, which combines short-term and long-term interest to predict
user preferences and obtains a more comprehensive representation for the current ses-
sion. This results demonstrate the effectiveness of combining short-term and long-term
preferences by assigning different attention weights to different items in the session.

Among all the baseline methods, GNN-based methods outperform traditional and RNN-
based methods in most cases. It takes into account the transitions between items in
the current session, models each session as a graph rather than a simple sequence, thus
to capture richer information through GNN. SR-GNN demonstrates the effectiveness of
applying GNN to extract local information from the session graph. It indicates that
modeling local information for a session through GNN is more suitable than RNN. GCE-
GNN constructs two graphs based on local and global item transitions, and the results
show that this structure is superior to a single graph structure like SR-GNN. But it
only models the transition between items, laking the ability to capture larger granularity
information. DHCN also leverages both inter and intra session information in hypergraph.
However, the results are lower compared to GCE-GNN, indicating that if inter session
information is not discreetly exploiting, it may even be a form of noise. SHARE employs
the hypergraph to model a session and uses a sliding window on the session to capture its
group intention, but only using hypergraph structure is not effective because of the issue
of sequential information loss. Disen-GNN learns the item representation at a finer level
of granularity, i.e., factor level, and achieves better results than above models. Because
it extracts deeper information and represents richer embedding. However, compared to
performance improvement, the time and memory consumption brought by this factor level
model are also multiplied.

Our approach greatly improves performance because our model fully combines group
intention and sequential pattern of a session. Based on the learnt sequential pattern,
the most likely item to be visited next is selected from a global level perspective, and
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subsequent information is injected into the current session representation using the fusion
function. To capture the group intention, hypergraphs with sliding windows are con-
structed so that the concept of group intention. Besides, We use the whole session as a
hyperedge to assist in creating hypergraph, which can provide more precise representa-
tions. As a result, our approach achieves better performance.

4.6. Ablation experiments(RQ2). To verify the contribution of the hypergraph mod-
ule and the subsequent item injection module to the performance of MM-GNN, ablation
experiments are performed in this section. We’ve done the experiments by removing one
of the modules from MM-GNN to analyze its performance change.

• w/o s: Remove the subsequent item injection module from MM-GNN.
• w/o h: Remove the hypergraph learning module from MM-GNN.
• w/o w: Remove the hyperedge with session length from MM-GNN.

Table 3 shows the impact of the different modules. It can be seen that the absence
of the hypergraph-based learning module has the greatest impact on the performance
of MM-GNN, which indicates that the combination of group intention and sequential
pattern mining is effective. The subsequent item injection module helps to improve the
performance, especially in the MRR@k metric, but in the P@k metric of the Nowplaying
dataset, removing the subsequent item injection module leads to higher results, indicating
that although the subsequent information injection this module utilizes extra information
that does not exist in the current session, which leads to a higher ranking of the hit
items, it also brings a certain degree of long-tail effect, but overall the subsequent item
injection module is effective and we should focus more on introducing richer information.
The results obtained by merely removing the hyperedge with session length are ranked
between w/o h and MM-GNN, which indicates the effectiveness of this strategy.

Table 3. Ablation study results

DATASET TMALL NOWPLAYING DIGINETICA
Methods P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
w/o s 35.22 15.61 23.74 7.92 55.03 19.37
w/oh 33.81 15.26 23.36 8.37 54.64 19.20
w/o w 34.78 15.76 23.03 8.48 54.99 19.41

MM-GNN 35.19 15.90 23.28 8.50 55.13 19.45

4.7. Impact of aggregation operations(RQ3). When we use multiple session repre-
sentations, it is significant to compare the sum aggregation operation taken by MM-GNN
with other different aggregation operations (i.e., concatenation, gating).

For the concatenation operation, the final representation is the concatenation of the
vector Snh, Ssubsq:

S = W10 ([Snh∥Ssubsq]) (23)

Where W10 ∈ Rd×2d is a trainable parameter. For the gating operation, the formula is as
follows:

m = σ
(
W T

11Snh +W T
12Ssubsq

)
S = mSnh + (1−m)Ssubsq

(24)
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Where W11, W12 ∈ Rd are trainable parameters, and is used to balance the importance
between the vectors.

Figure 3 shows the performance of different aggregation operations on the three datasets.
It can be observed that the sum aggregation method we used outperforms the other two
aggregation methods in almost all four metrics for the three data sets. The performance
of the concatenation method is the worst on the three datasets. The gating method is in
between, but it outperforms the sum aggregation method on the Tmall dataset, indicat-
ing that the sum method does not fully exploit the performance of the model on certain
datasets and that the capabilities demonstrated by the gating mechanism deserve further
investigation.

Figure 3. Impact of aggregation operations

4.8. Impact of stacking multiple NEN blocks on results(RQ4). Previously in
our experiments, the hypergraph module used only 1 NEN block, which may limit the
performance of the model. In this subsection we will investigate the effect of stacking
multiple NEN blocks. We stacked 1, 3, 5, 7, 9, 11, and 13 NEN blocks on the Tmall
dataset, and the experimental results are shown in Figure 4. From the figure, we can
see that stacking multiple NEN blocks is effective, especially when stacking the second
and third blocks, the performance increases dramatically. The performance of P@10 and
P@20 metrics of the Tmall dataset is optimal when stacking the seventh NEN block, and
the performance of MRR@10 and MRR@20 metrics is optimal when stacking the third
NEN block. When there are more NEN blocks, the model performance decreases because
more NEN blocks lead to over-smoothing.

Figure 4. Impact of stacking multiple NEN blocks
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5. Conclusions. Recommendation models that combine graph neural networks and ses-
sions have become a hot topic. In this context, we propose a graph neural network session
recommendation model (MM-GNN) that incorporates multi meta information. First, we
fuse normal graph and hypergraph to achieve dual information capture of group inten-
tion and sequential behavior. Then, we propose the subsequent item injection module
to inject possible next information of the last item of the current session at the global
level. Extensive experimental and empirical studies have demonstrated the validity of our
framework and shown it to be superior to other recent baselines.
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