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Abstract. Traditional decorative pattern design often relies on the imagination of the
designer, but these limited resources may limit the variety and innovation of designs.
Manually designing and experimenting with various patterns can be time and resource
intensive, especially when complex geometric structures and textures are involved. There-
fore, this work proposes a decorative fractal pattern generation method based on an im-
proved quantum genetic algorithm, which can help to solve the problems of creativity,
time, cost, diversity and personalisation needs in decorative pattern design. Firstly, the
basics of fractal theory are analysed, including the definition and characteristics of fractal
patterns, and a variety of traditional fractal pattern generation methods under mathe-
matical logic thinking are investigated. Then, an improved quantum genetic algorithm
is proposed in order to further improve the convergence speed of quantum search and
increase the diversity of the population. A new quantum rotating gate adjustment rule
was designed in order to process the quantum rotation angle in real time. In addition,
a catastrophe operator based on a tournament selection mechanism is employed in or-
der to overcome the phenomenon of prematurity. Finally, a unique fitness function was
designed considering three aspects of fractals, such as aesthetics, symmetry, and deco-
rative effect. Experimental simulation results show that the improved quantum genetic
algorithm can obtain better solutions than other quantum evolutionary algorithms. The
example results of wall decoration patterns verify the feasibility of the proposed method.
Keywords: Genetic algorithm; Quantum computing; Fractal theory; Decorative pat-
terns; Catastrophe operator

1. Introduction. Fractal patterns exhibit unique and beautiful geometric forms and self-
similarity, giving a sense of symmetry, order, and the beauty of complexity [1, 2]. The
study of fractal patterns allows for an in-depth exploration of aesthetic principles and laws
in nature and art. Fractal patterns are widely found in nature and man-made objects.
By studying fractal patterns, we can reveal the laws and patterns in nature and help us
better understand and recognise complex structures and forms, such as the bifurcated
structure of leaves and the shape of clouds [3, 4]. Fractal geometry, as a representation
of nonlinear dynamical systems, can help study and analyse the behaviour of nonlinear
dynamical systems. The ability of fractal patterns to capture the scale invariance and
complex structure of attractors in dynamical systems provides a tool to study complex
systems [5, 6]. Fractal patterns can be applied in many fields, for example, fractal patterns
can be used in artworks, decorations, wall decorations, fabric designs, etc [7] to create
unique visual effects and aesthetics in art and design.
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Fractal patterns have a wide range of applications in architectural interior design. Wall
and ceiling decorations using fractal patterns can add a unique artistic atmosphere to
interior spaces. The geometry and self-similarity of fractal patterns can give walls and
ceilings richer textures and details, creating a sense of visual richness and dynamism [8, 9].
Fractal patterns can be used to design patterns for floor tiles, carpets or flooring to create
interesting geometric textures and a sense of artistry. The detail and regularity of fractal
patterns can add comfort and visual enjoyment in floor decoration. Fractal patterns can
be used in furniture and decorative items such as sofas, curtains, and lamps. The fractal
pattern design of these furniture and decorative items can provide a unique visual focal
point for the interior environment, adding artistic ambience and individuality. Decorative
partitions using fractal patterns can subtly partition interior spaces, providing privacy
while keeping the space open and fluid. The form and regularity of fractal patterns can
create subtle dividing lines and transitional effects [10, 11, 12].

By applying fractal pattern design, architectural interiors are able to create unique
visual effects, rich textures and artistry, bringing a higher level of aesthetics and person-
alisation to interior spaces. It can complement other design elements to shape a unique
spatial atmosphere and user experience. Therefore, this study aims to achieve innovative
and diverse generation of decorative fractal patterns through quantum genetic algorithm.
By introducing quantum computing ideas into the evolution of the genetic algorithm, it
can help generate richer, unique and innovative fractal pattern designs. In addition, by
improving the quantum rules, the speed and quality of fractal pattern generation can be
improved and the consumption of computational resources can be reduced.

1.1. Related Work. research in the field of fractal pattern generation has focused on
the following areas:

Firstly, for the optimisation and improvement of fractal algorithms, researchers have de-
voted themselves to improving the generation efficiency and quality and exploring faster
and more accurate generation methods. Aguirre et al. [13] implemented an optimisa-
tion technique based on fractal nature by modifying the chaotic optimisation algorithm.
The method first implements the fractal property in weighted gradient direction chaotic
optimisation and compares it with conventional optimisation algorithms. Fronczak and
Fronczak [14] presented fractal graph optimisation algorithms for three types of graph
optimisation problems (all-pairs shortest path, all-pairs maximum flow and search). Each
algorithm utilises a hierarchical decomposition approach to solve a specific type of opti-
misation problem. Tavazoei and Haeri [15] proposed a continuous optimisation problem
solving method that can be applied in fractal pattern generation to achieve better op-
timisation results. They search the state space of a continuous optimisation problem
iteratively to find a globally optimal solution.

Secondly, researchers have focused on the personalisation and controllability of fractal
pattern design by introducing user needs and preferences for customised pattern genera-
tion. In addition, there are studies focusing on the application of fractal patterns in various
fields, such as architectural design, interior decoration, and digital media. Meanwhile, by
combining fractal patterns with other techniques, such as machine learning and genetic
algorithms, researchers aim to generate more innovative and diverse patterns. Pang and
Hui [16] proposed a method for personalised fractal pattern generation using interactive
genetic algorithm. By interacting with the user, the user’s needs and preferences are used
as the objective function of the genetic algorithm, so that the generated fractal patterns
are more in line with the user’s personalised requirements. By introducing the interac-
tive genetic algorithm, the researchers successfully achieved personalised fractal pattern
generation, which enables the user to participate in the generation process and satisfies



426 Y. Xu

the user’s personalised needs and curiosity. Abboushi et al. [17] proposed a method for
fractal image aesthetic design based on user preferences. By collecting user evaluations
of different sample images, a prediction model is built to determine the user’s aesthetic
preferences and generate a personalised fractal image design that meets the user’s needs.
Chao [18] proposed a user-driven interactive fractal image generation method using a
genetic algorithm. By combining genetic algorithms and user feedback, user evaluation
and preferences are used as optimisation functions to provide users with a customised
fractal image generation experience. User participation and feedback help to generate
image results that are more in line with user needs and preferences.

1.2. Motivation and contribution. Fractal pattern generation usually involves com-
plex geometric structures and textures that require highly accurate optimisation and
tuning. Traditional genetic algorithms may encounter inefficiencies when dealing with
complex optimisation problems [18, 19], especially when confronted with high-dimensional
spaces and large-scale search spaces. Quantum genetic algorithms have a greater ability
to handle and optimise complex problems, and through techniques such as quantum gate
operations in quantum computing [20, 21], the generation and optimisation of fractal pat-
terns can be performed more accurately. Therefore, the application of quantum genetic
algorithms to the problem of decorative fractal pattern generation is proposed. The main
innovations and contributions of this work include:

(1) New quantum rotating-gate tuning rules were devised in order to process quantum
rotating angles in real time, thus improving the convergence speed of the quantum search
and increasing the diversity of the population, and then a catastrophe operator based
on a tournament selection mechanism [22, 23] was employed in order to overcome the
phenomenon of prematurity.

(2) A decorative fractal pattern generation method based on improved quantum genetic
algorithm is proposed, and specific implementation steps are given. A unique fitness func-
tion is designed considering three aspects of fractal aesthetics, symmetry, and decorative
effect. The scores are weighted and summed according to specific needs. These specific
needs can be adjusted at any time according to the different demand tendencies of the
customers.

2. Basic knowledge of fractal theory.

2.1. Definition of fractal patterns. The introduction of the concept of fractals and the
establishment of the theory can be traced back to the 1970s. Fractal theory originated
from the mathematician Mandelbrot’s study of the phenomenon of self-similarity. He
observed that many forms and structures in nature exhibit self-similarity, i.e., similar
shapes can be seen no matter how many times they are magnified. Mandelbrot called this
self-similarity feature a fractal.

The establishment of fractal theory relies heavily on advances in computer technology.
Through computer simulations and graphical representations, people are able to better
understand and study fractal structures. Fractal theory is not only applied in the field of
mathematics, but also penetrates into various fields such as physics, biology, and econom-
ics. The core idea of fractal theory is to generate complex forms through simple rules and
repetitive processes. It emphasises the disorder and randomness in nature and presents
an aesthetic sense of rules and order. The formulation of the concept of fractals and the
establishment of the theory have played an important role in recognising and explaining
complex phenomena in nature, and have had a far-reaching impact on people’s under-
standing of the structure and laws of nature. A fractal can be defined as a geometric
shape or mathematical structure with self-similarity and infinite detail. It is a pattern
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that can be repeated at any scale, and similar shapes can be seen no matter how large
the scale at which it is viewed, i.e., it has the same statistical properties.

2.2. Characteristics of Fractal Patterns. Fractal theory has a wide range of appli-
cations and can be used to describe many phenomena and structures in nature, such as
the shapes of clouds, the contours of mountain ranges, the branches of plants, and the
waveforms of an electrocardiogram. Through the introduction of the concept of fractals,
people are able to better understand and explain complex natural phenomena and have
found many interesting applications in science, art and engineering. Fractal patterns have
several characteristics:

(1) Self-similarity: The self-similarity of a fractal pattern is its most remarkable feature.
Similar shapes and structures can be found no matter how large the scale of observation.
Even if a part of the pattern is enlarged or reduced, the same pattern as the whole can
still be seen. This self-similarity can be either strict, i.e., exactly the same at every zoom
level, or statistical, i.e., statistically similar.

(2) Infinite detail: Fractal patterns produce infinite detail as they are continuously
subdivided. Zooming in on the fractal pattern multiple times reveals more and more fine
structure and detail. This infinite detail makes the fractal pattern rich in information and
texture at all scales.

(3) Scale invariance: Fractal patterns maintain similar statistical properties at different
scales. The statistical properties of fractal patterns (e.g., dimensionality, fractal param-
eters, etc.) remain constant even when viewed at different scaling levels. This scale
invariance makes fractal patterns have a wide range of applications in mathematics and
scientific research.

(4) Complexity: Fractal patterns characterise many complex systems in nature. They
are often generated by simple rules and repetitive processes, yet exhibit complex forms
and structures. The complexity of fractal patterns reflects the richness of information and
chaos.

3. Methods for generating fractal patterns in mathematical logic.

3.1. Iterated Function System. Iterated Function System (IFS) is a method for gen-
erating fractal patterns based on successive transformations [24, 25]. By defining a set
of transformation functions and weighting coefficients and applying these functions con-
tinuously and iteratively, a fractal pattern is finally obtained. Koch snowflake and the
Sierpinski triangle are generated by the IFS, as shown in Figure 1 and Figure 2, respec-
tively. It is obvious that they both have the self-similarity property.

The basic method of IFS generation is as follows.

X ′ = f(X) (1)

where X is a point in space and f is a system of functions consisting of several affine trans-
formations (scaling, rotation, translation). Each affine transformation can be expressed
as:

f(x, y) =
(
ax+ by + e, cx+ dy + f

)
(2)

where a, b, c, and d control scaling and rotation; e and f control translation.
For an IFS containing N affine transformations, it can be expressed as follows.

F (X) = {f1(X), f2(X), . . . , fN(X)} (3)

At each iteration, a random transformation fi is chosen from F and applied to the
current point X to obtain a new point X ′.

X ′ = fi(X) (4)
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Figure 1. Koch snowflake

Figure 2. Sierpinski triangle

During the iteration, starting from some initial point X0, the transformation is repeat-
edly selected and applied. 

X1 = f1(X0)

X2 = f2(X1)

X3 = f3(X2)

. . .

(5)

After a sufficient number of iterations, the resulting point set will asymptotically ap-
proach the desired fractal pattern.

3.2. Fractal Noise. Fractal Noise is a method of generating fractal patterns based on
randomness. It can be used to create textures and patterns with fractal characteristics
by iterating, merging and amplifying the noise signal several times. Fractal noise is often
used to generate realistic textures, terrain, and clouds, among other effects. Common
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Fractal Noise algorithms include the Midpoint Displacement Method, Rock Fractal, and
the Vladivsky Method. The key to generating Fractal Noise patterns is usually fractional
brown circle noise, as shown below:

fBm(x, y) =
∑(

noise(freqx ∗ x, freqy ∗ y)
freq(H+n)

)
(6)

where freqx and freqy are frequencies in the x and y directions; freq = max(|freqx|, |freqy|);
H is the roughness parameter, which controls the fractal dimension; N is the number of
octaves, which controls the level of detail.

3.3. Linear recursive methods. The linear recursive method is a fractal generation
method based on a system of linear equations. By defining a set of linear equations and
initial conditions, the system of equations is solved step by step iteratively to obtain
a fractal pattern. A classical linear recursive fractal is the Sierpinski carpet. For the
linear recursive method of generating fractal patterns the computational formula can be
described by the following recursive equation:{

xn+1 = a · xn + b · yn + e

yn+1 = c · xn + d · yn + f
(7)

where (xn, yn) is the coordinate of the nth point; (a, b, c, d, e, f) is the parameter of the
linear transformation matrix. By continuously iterating the above equations, a graph
with fractal features can be generated.

3.4. Stochastic fractal generation methods. Random fractal generation method is
a fractal pattern generation method based on randomness. By randomly selecting and
transforming different parts of the image, and then repeating and combining them, the
fractal pattern is finally generated. This method is often used to generate artistic abstract
fractal patterns.

A simple random fractal generation method can use the following random translation
transform function: {

xn+1 = a · xn + b · r1 + e

yn+1 = c · yn + d · r2 + f
(8)

where (r1, r2) is a uniformly distributed random number that is different in each iteration.

3.5. Lindenmayer system. The L-system is a fractal generation method based on string
substitution [25, 26]. A fractal pattern is generated by defining a set of simple rules that
iteratively replace an initial string with a more complex sequence of strings. The L-system
is often used to model the branching structure of plants, as shown in Figure 3.

Figure 3. Branching structure of plants based on L system

Compared with these traditional fractal pattern generation methods mentioned above,
the fractal pattern generation method based on genetic algorithm can carry out customised
pattern generation according to user requirements and preferences. By introducing user
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evaluation and preference as the optimisation function of the genetic algorithm, person-
alised fractal pattern generation according to user needs can be achieved to meet the
personalised requirements of users.

4. Quantum genetic algorithms and improvement techniques.

4.1. Principles of Quantum Genetic Algorithms. In terms of computable problems,
quantum computers can only solve problems that traditional computers can solve, but in
terms of computational efficiency, due to the existence of quantum mechanical superpo-
sition, certain currently known quantum algorithms are faster than traditional general-
purpose computers in dealing with the problem, thus completing the very complicated
problem of solving the problem in the appropriate time.

(1) Quantum Bit Coding
The two-dimensional complex vector space defines |0⟩ and |1⟩ to denote two different

quantum bit states, and in addition to the above two states, the state of a quantum bit can
be a superposition between the above two states [27]. As the smallest unit of information,
the state of a quantum bit can be represented as:

|φ⟩ = α|0⟩+ β|1⟩ (9)

where α and β both denote a complex number called the associated probability amplitude
and satisfy the condition |α|2 + |β|2 = 1.
Quantum bits and quantum superposition states are used to encode chromosomes in

quantum genetic algorithms [28]. Each quantum chromosome is encoded as follows:

qtj =

[
αt
1 αt

2 ... αt
m

βt
1 βt

2 ... βt
m

]
(10)

where t denotes the number of population generations.
The quantum population of the tth generation is denoted as Q(t) = {qt1, qt2, ..., qtn}, m

denotes the number of quantum bits and n denotes the population size. In addition, the
following normalisation conditions need to be satisfied:

|αt
i|2 + |βt

i |2 = 1, i = 1, 2, ...,m (11)

(2)Quantum Revolving Door
As the most basic operational step, quantum bits use quantum gates to perform matrix

transformations to complete state migration in order to complete population evolution.
Quantum bit operation generally uses quantum rotating gates [29], which are defined as
follows:

U(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(12)

The process of population evolution is as follows:[
αt′
i

βt′
i

]
=

[
cos θi − sin θi
sin θi cos θi

] [
αi

βi

]
(13)

where θi denotes the rotation angle, and it is necessary to follow the adjustment rule to
specify the angle and direction of θi. The coordinates of the quantum revolving door are
schematically shown in Figure 4.

(3) Quantum crossover and mutation
The quantum crossover operation is a fully perturbative crossover operation based on

the coherence property of quanta. For a quantum crossover operation, each quantum
chromosome in the population is required to implement the crossover operation. If the
population number is 6 and the chromosome length is 7, a crossover operation with
diagonally rearranged combinations is given in Table 1.
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Figure 4. Schematic diagram of the quantum revolving door

Table 1. Full interference cross

No. Interference cross
1 A E D C B A E
2 B A E D C B A
3 C B A E D C B
4 D C B A E D C
5 E D C B A E D

In the quantum variation operation, the quantum genetic algorithm uses the quantum
variation operator U(ω(∆θi)) to achieve update optimisation.

U(ω(∆θi)) =

[
cos(ω(∆θi)) − sin(ω(∆θi))
sin(ω(∆θi)) cos(ω(∆θi))

]
(14)

ω(∆θi) = f(αi, βi) ∗∆θi (15)

where f(αi, βi) denotes the direction of rotation, ∆θi denotes the magnitude of the rota-
tion, and ∆ denotes the adjustment factor (which generally takes on a small value).

4.2. Improved quantum genetic algorithm. The improvements in this paper are
divided into two main areas:

Firstly, since the small habitat co-evolutionary strategy based on probability partition-
ing can effectively solve the optimisation problem of multivariate continuous function, this
paper introduces the small habitat co-evolutionary strategy in the initialisation process
of the population, which is conducive to maintaining the diversity of the population and
easier to find the optimal solution. Then the initial quantum level is calculated as follows:

[
αk

βk

]
=

√ i
N+1√
1−i
N+1

 (16)
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where i denotes the ordinal number of the subpopulation and N denotes the total
number of subpopulations.

Secondly, as mentioned earlier, the adjustment of quantum chromosomes needs to be
done via U(θi) according to the quantum rotating gate adjustment rule in order to com-
plete the population evolution. In this paper, a new quantum rotating gate adjustment
rule, as shown in Table 2, is designed in order to process the quantum rotation angle in
real time, which improves the convergence speed of the quantum search and increases the
diversity of the population. It can be seen that the main idea is that the current individ-
ual needs to implement the evolutionary process towards the optimal individual in any
state. Where xi is the i-th position of the current chromosome, bi is the i-th position of
the current optimal chromosome, and f(·) is the fitness function. The quantum revolving
door U(θi) is updated as shown in Equation ??.

Table 2. Quantum revolving door adjustment rule

xi bi f(xi) ≥ f(bi) ∆θi
s(αi, βi)

αiβi > 0 αiβi < 0 αi = 0, βi = 0
0 0 False δ -1 +1 0
0 0 True δ -1 +1 0
0 1 False δ +1 -1 0
0 1 True δ -1 +1 0
1 0 False δ -1 +1 0
1 0 True δ +1 -1 0
1 1 False δ +1 -1 0
1 1 True δ +1 -1 0

5. Decorative fractal pattern generation based on improved quantum genetic
algorithm. Fractal pattern generation based on genetic algorithms belongs to the class
of evolutionary algorithms. Evolutionary algorithms are a class of heuristic optimisation
algorithms based on biological evolution and heredity, of which genetic algorithms are
the most widely used type of evolutionary algorithms. Genetic algorithms optimise and
search for candidate solutions by simulating the process of biological evolution through
operations such as selection, crossover and mutation.

In decorative fractal pattern generation based on improved quantum algorithm, the
fractal pattern can be regarded as an individual (i.e., chromosome) in the genetic al-
gorithm, and the process of fractal pattern generation can be regarded as an objective
function in the optimisation process. The advantages and disadvantages of each individual
are measured by the fitness function, and the selection, crossover and mutation operations
are performed on the individuals to continuously evolve to generate new individuals until
a satisfactory fractal pattern is achieved.

Decorative Fractal Pattern Generation Based on Improved Quantum Genetic Algorithm
is a method that uses a combination of quantum genetic algorithm and decorative tech-
niques to generate fractal patterns with decorative effects. Specifically, the computational
process of the method is as follows:

Step 1. Encoding: the fractal pattern is represented as an encoding of the chromosome,
using binary or floating point encoding to represent the parameters and structure of the
fractal pattern.

Step 2. Initialise population: randomly generate an initial population of chromosomes
representing different fractal patterns.
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Step 3. Fitness function: Define the fitness function to evaluate the quality and deco-
rative effect of each individual (fractal pattern). In this paper, the design of the fitness
function takes into account the aesthetics, symmetry and decorative effect of the fractal.

(1) Aesthetic assessment F1 Define an aesthetics factor that is evaluated based on
factors such as the overall shape of the fractal pattern, the smoothness of the curves, and
the proportions. The aesthetics score is calculated using curve fitting by mapping the
aesthetics factor to a suitable score range, for example between 0 and 1.

(2) Symmetry assessment F2 Consider the symmetry of a fractal pattern, which is
assessed using the number of symmetry axes or the degree to which the symmetry features
match each other. Similarly, the symmetry score is calculated herein by mapping the
symmetry factor to a suitable range of scores.

(3) Evaluation of decorative effects F3 Define some decorative features such as texture
of patterns, complexity of shapes, richness of lines, etc. Use subjective scoring to get the
decorative effect factor and map it to an appropriate score range.

For the above assessment items, the scores can be calculated separately according to
the importance and weight, and then the scores can be combined to get the composite
adaptation score. In this paper, we weight and sum the scores according to specific
needs. These specific needs can be adjusted at any time according to the different demand
tendencies of customers. Therefore, the calculation equation of the adaptability function
can be defined as:

fitness = w1 ∗ F1 + w2 ∗ F2 + w3 ∗ F3 (17)

where w1, w2, and w3 are the weights of each assessment item to balance the importance
of each assessment.

Step 4. Quantum encoding: the chromosome is quantum encoded to map the values of
the chromosome to quantum bits.

Step 5. Quantum initialisation: quantum initialisation of quantum-encoded chromo-
somes to generate initial quantum states as populations.

Step 6. Selection: use a selection operation (e.g., quantum measurement) to select a
subset of individuals as parents based on the probability distribution of quantum states.

Step 7. Quantum crossover: quantum crossover operation is performed on selected
parents to achieve chromosome crossover through the action of quantum gates.

Step 8. Quantum mutation: a quantum mutation operation is performed on the newly
generated chromosome, introducing operators such as quantum spinning gate or quantum
annealing to introduce random changes.

Step 9. Inverse Quantum Coding: inverse quantum coding of the quantum coded
chromosome to map the quantum bits back to the chromosome values.

Step 10. Iteration: Repeat quantum selection, quantum crossover and quantum mu-
tation operations to continuously generate new individuals until the specified number of
iterations is reached or the termination condition is satisfied.

Step 11. Result: the individual with the highest fitness is selected as the final generated
decorative fractal pattern.

By combining the properties of quantum computing with genetic algorithms, it is pos-
sible to take full advantage of quantum parallelism and quantum iteration to improve
the efficiency of search and optimisation. At the same time, the combination of decora-
tive techniques can increase the decorative effect and complexity of the generated fractal
pattern. Through the iterative optimisation process of quantum genetic algorithm, in-
dividuals approaching the target fractal pattern can be gradually generated, and the
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quality and characteristics of the generated fractal pattern can be continuously improved
by selection and mutation operations.

6. Experimental results and analyses.

6.1. Experimental setup. In order to verify the advantages of the proposed improved
quantum genetic algorithm even further, it was tested against the Quantum Particle
Swarm Algorithm (QPSO) [30], and the Two-dimensional Quantum Genetic Algorithm
(2D-QGA) [31]. The experimental parameters were configured as follows: the number
of populations was 100, the maximum number of iterations was 200, and the number
of quantum bits was 10 (the encoding of fractal patterns needs to be represented using
10 quantum bits). Hadamard gates were selected for quantum crossover and quantum
mutation operations. Hadamard gate [?] is selected for initialisation operation and CNOT
gate for quantum crossover operation. The quantum mutation operations are CNOT gate
and single-bit rotation gate. The rotation angle chosen in this paper is π/2.

According to the actual needs and design objectives of wall decorations, the weights
of the adaptability function and the specific evaluation methods are set. The weight of
the aesthetics factor w1 = 0.4, the weight of the symmetry assessment w2 = 0.3, and the
weight of the decorative effect assessment w3 = 0.3.

6.2. Function processing performance test. In order to verify the convergence and
optimisation ability of the algorithms proposed in this paper, the above three algorithms
are used to optimise five typical continuous complex functions, namely: Sphere func-
tion, Rosenbrock function, Rastrigin function, Griewank function and Ackley function,
as shown in Figure 5. Comparing the results, it can be seen that compared with QPSO
and 2D-QGA, the results obtained by the proposed algorithms in this paper are one or
two orders of magnitude higher, that is to say, avoiding the population from falling into
the local optimal solution, and improving the accuracy and efficiency of fractal pattern
generation.

Figure 5. Test function and comparison results
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6.3. Design Example. The wall decoration design is used as a real case to verify the fea-
sibility of the improved quantum genetic algorithm. The wall decoration fractal patterns
designed are suitable for use in a restaurant or café. The fractal patterns are required to
provide a unique decorative element to enhance the aesthetics and artistry of the dining
experience. The geometric shapes and details of the patterns are also required to create
a modern and stylish feel for the restaurant.

In crossover and mutation operations, a retention method of fractal pattern coding
was used to ensure that the characteristics of the fractal pattern and design requirements
were maintained. Genetic coding was used to represent the fractal pattern. For crossover
operations, the strategy of uniform crossover was used. Uniform crossover means that
the crossover operation is carried out one by one at each gene position and the decision
of whether or not to carry out crossover is made based on the crossover probability,
thus transmitting the fractal pattern coding of the parent individual to the offspring
individual. In the binary coding approach, the features of the fractal pattern are preserved
by bit manipulation. For example, a mutation operation using bit operations such as bit
swapping or bit flipping ensures that the mutated individual retains the features of the
original individual. The generated fractal pattern for wall decoration is shown in Figure 6.

(a) Restaurants (b) Cafes

Figure 6. Generated fractal patterns for wall decorations

Taking Figure 6(b) as an example, it can be seen that the shapes and patterns in the
generated patterns have similarities at all scales, i.e., similar shapes and patterns can
be seen to appear whether observing the overall pattern or local details. The pattern
consists of multiple layers and branches that form a complex geometric structure. The
interweaving and interlacing of these branches and shapes creates a fine and interesting
geometric texture. The pattern exhibits symmetry, both horizontally and vertically, as the
symmetry of the shapes and patterns can be seen. The curves and shapes in the pattern
give a sense of flow and dynamism, as if presenting a flowing movement of comfort and
grace. Through these features, this wall decoration fractal pattern can create a unique
and comfortable atmosphere for the café, which meets the case design requirements, thus
verifying the effectiveness of the improved quantum genetic algorithm.

7. Conclusions. This work proposes the application of quantum genetic algorithm to
the problem of decorative fractal pattern generation. Firstly, a new quantum rotating gate
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adjustment rule is designed in order to process the quantum rotating angle in real time,
which improves the convergence speed of the quantum search and increases the diversity
of the population, and then a catastrophe operator based on the tournament selection
mechanism is employed in order to overcome the phenomenon of prematurity. Then,
a decorative fractal pattern generation method based on an improved quantum genetic
algorithm is proposed, and specific implementation steps are given. A unique fitness func-
tion is designed by considering three aspects of fractals, such as aesthetics, symmetry, and
decorative effect. The scores are weighted and summed according to specific needs. These
specific needs can be adjusted at any time according to the different demand tendencies
of customers. The results of generating fractal patterns for wall decoration in restaurant
and cafe scenarios meet the case design requirements, thus verifying the effectiveness of
the improved quantum genetic algorithm.
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