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Abstract. Estimates in the design phase of construction projects have a crucial impact
on the whole life cycle cost of the project, and it is necessary to study and analyze them
separately. However, there is a large amount of features in construction project cost
samples. In addition, the traditional construction project cost prediction model based on
Support Vector Machine (SVM) has relatively limited feature extraction and transforma-
tion capabilities for data, and cannot automatically extract complex features. Therefore,
this work proposes a hybrid machine learning model-based construction cost prediction
method. Firstly, a reasonable construction project cost prediction index system is con-
structed on the basis of expert scoring, combined with the composition of construction
project cost and its influencing factors. At the same time, principal component analysis
is used to reduce the dimensionality of the attribute indexes to get the unrelated compos-
ite indexes, which reduces the sample complexity and improves the learning efficiency of
the model. Then, the probability mean is obtained from the front and back neighboring
values, so as to get the a priori model of the corresponding features. Next, a predic-
tion model based on BP neural network and Twin Support Vector Machine (TWSVM)
is constructed based on the 17 extracted feature indicators as the input set. Aiming at
the defects of TWSVM model that the parameter settings depend on empirical values,
with the advantage of particle swarm algorithm in the field of parameter optimization, a
prediction model based on particle swarm optimization parameters is proposed, enhanc-
ing the predictive accuracy and robustness. Finally, three methods, BP neural network,
LS-TWSVM and BP-PSO-TWSVM, are selected for the simulation and prediction of
engineering cost, respectively. The experimental results show that the BP-PSO-TWSVM
model is the optimal model, and the gap between its cost prediction value and the real
value is small, and the prediction results are stable and highly accurate.
Keywords: Construction cost; Machine learning; Predictive modeling; TWSVM; BP
neural network; PSO

1. Introduction. How to efficiently and rapidly carry out construction cost prediction
has become an important part of engineering construction. Construction cost prediction
has a significant impact on project investment, and accurate construction cost prediction
is crucial for realizing correct investment decisions [1, 2]. Therefore, it is very necessary
to conduct an in-depth study on the project cost prediction in the pre-project stage.
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As a necessary item in the pre-project preparation, construction cost prediction refers
to the estimation of the cost required for a certain project construction, including all
steps of construction [3]. The construction unit needs to take the prediction results as an
important basis for construction decision-making in order to minimize the construction
budget and avoid waste. However, due to the construction process, there are too many
uncertainties in the costing of a large number of items and a large number of items,
the difficulty of the prediction is also increased accordingly. In addition, due to the
relative complexity of the engineering structure, efficient prediction based on the current
engineering environment is still the difficulty of the current research [4, 5].

Construction project cost prediction is realized by certain mathematical models and
relevant historical engineering data. Previous cost estimation models usually focus on
regression theory [6], fuzzy mathematics [7], gray system theory [8] and artificial neural
networks [9]. However, the traditional construction project cost prediction model mainly
suffers from the defects of low computational accuracy, poor stability, and insufficient
generalization ability, which makes it difficult to give reasonable and effective guidance
to cost management work in the early stage of the construction project. The traditional
construction cost prediction model based on support vector machine (SVM) has limited
ability to model complex nonlinear relationships [10]. BP neural networks, on the other
hand, are good at learning and capturing complex nonlinear relationships in data, which
can help to supplement the shortcomings of SVM in this regard, thus making the model
more accurate in predicting construction project cost. Therefore, the research objective
of this work is to combine BP neural network and SVM to construct a hybrid machine
learning model, which can further improve the performance of construction cost predic-
tion.

1.1. Related Work. Many scholars have used linear regression [11], GM(1,1) gray pre-
diction model [12], time series analysis [13], moving average method and other methods
for project cost prediction, but these traditional statistical learning methods have large
defects in the process of application, and the applicability is not strong. With the devel-
opment of machine learning algorithms, BP neural network [14], SVM, genetic algorithm
(GA), particle swarm algorithm (PSO), and others are applied to the cost prediction
model. Compared to traditional algorithms, these algorithms have more improvements in
prediction accuracy and sample requirements.

An et al. [15] proposed to establish an SVMmodel by using the dimensionality reduction
of least squares regression and the original feature indicators to predict the cost of sub-
projects and one-sided costs and found that the prediction efficiency of the SVM model
based on dimensionality reduction indicators has been improved. Yi et al. [16] established
a construction cost prediction model using the least squares support vector machine, and
optimized the model using the improved PSO algorithm, verifying the significance of the
model through examples. Yi et al. [16] used the PSO algorithm to optimize the model
and verified the significance of the model through examples. Lin et al. [17] used Principal
Component Analysis (PCA) technology to process the residential engineering data and
used the support vector machine and least squares support vector machine for training,
prediction, and comparative analysis to select a more reasonable prediction model.

Jafarzadeh et al. [18] proposed an Artificial Neural Network (ANN) as the basis for
extracting the main feature parameters of the project and determining the internal stor-
age weights after sufficient learning of the training samples, so as to carry out the cost
estimation at the design stage without the complete information of the project. Hong et
al. [19] further improved the BP neural network algorithm using PSO to optimize the
initial weights and thresholds of the model. neural network algorithm to optimize the
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initial weights and thresholds of the model. However, such neural network algorithms
require a large number of training samples, and the training speed is slow, which fails to
take into account the limited number of historical reference cases that can be collected
during the actual prediction process and the insufficient resources of the sample base.
Car-Pusic et al. [20] used neural networks to establish a project cost prediction model.
By collecting field data and historical data with certain similarity of the project to be
predicted, the linear dynamic values of the cost parameters over time are extracted, and
the laws are converted into comparison factors to realize the prediction. However, this
prediction method has more limitations, and the prediction error is larger for projects
with a large number of items. Dang-Trinh et al. [21] used a machine learning-based
project cost prediction method. The center value of each step of building construction is
extracted by principal component analysis method. Then the minimum cost required for
each step is calculated in steps. The machine learning method is used to filter and solve
the prediction samples to obtain the cost trend and then realize the prediction. However,
this method does not take into account the influence of uncertainty and unexpected fac-
tors in building construction, and the prediction results are affected by the large error in
the a priori numerical calculation.

1.2. Motivation and Contribution. SVM-based prediction models have relatively weak
fitting ability for complex datasets and nonlinear relationships. By combining with BP
neural networks, the BP-SVM model can make full use of the powerful generalization
ability of neural networks and the convex optimization property of SVM, so as to improve
the adaptability of the model and achieve better prediction results for different types of
datasets and scenarios. In addition, Twin Support Vector Machine (TWSVM) is an im-
proved algorithm based on SVM [22, 23], which learns two optimal partition hyperplanes
at the same time to improve the classification performance and generalization ability.
Compared with SVM, TWSVM has advantages in both learning efficiency and calcula-
tion efficiency. It learns two independent maximum boundaries instead of one, which
makes the calculation more efficient. At the same time, the models learned by TWSVM
are usually more sparse and easier to explain. In this paper, we try to combine TWSVM
with BP neural networks to realize the cost prediction model. The main innovations and
contributions of this work include:

(1) On the basis of expert scoring, combined with the composition of construction
project cost and its influencing factors, a sample of 28 cases of engineering data with 17
characteristic indicators was initially constructed. At the same time, principal component
analysis was used to downscale the attribute indicators to obtain 9 comprehensive indica-
tors with higher contribution rates, thus reducing the sample complexity and improving
the learning efficiency of the model.

(2) In order to further improve the accuracy of the prediction model, the a priori
information and probabilities of different characteristic data in the historical data samples
of construction project cost are collected. The solution results are used as the initial
comparison conditions of the subsequent prediction model to minimize the determination
error.

(3) In construction cost prediction, it is proposed to combine BP neural networks and
TWSVM to obtain a more powerful and accurate hybrid prediction model. Aiming at the
defects of the TWSVM model that the parameter settings depend on empirical values,
the PSO-TWSVM model is proposed with the advantage of PSO in the field of parameter
optimization, which enhances the hybrid model’s stability even further.

2. Determination of model indicators and pre-processing.
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2.1. Construction of cost prediction index system. To carry out the prediction of
construction project cost, it is necessary to provide a set of construction project character-
istic vectors as input variables for the prediction model, so as to output the predicted value
of project cost after intelligent learning of the collected project data in the model. Engi-
neering characteristic indicators are key parameters that represent the unique features of
a building project and provide the breakdown of construction costs. The engineering cost
characteristic index is essential for predicting various engineering costs accurately. The
prediction index system condenses numerous small factors of a construction project into
a comprehensive overview, reflecting the project’s overall situation. Thus, it is essential
to adhere rigorously to the fundamental construction principles and procedures while sys-
tematically and thoroughly developing the building project cost prediction index system
to facilitate the model’s input.

In order to identify the characteristic indicators of construction project cost more ob-
jectively, this study, based on the basic composition of construction project cost, divides
the prediction indicator system into different levels, and carries out the refinement of the
characteristic indicators respectively, so as to strengthen the systematicity and complete-
ness of the indicator system. To summarize, the five indicators related to architectural
features, structural foundation-related indicators, decoration-related indicators, installa-
tion engineering-related indicators, and project features-related indicators are taken as the
first-level indicators. Also, in order to reflect the commonalities of construction projects
comprehensively and objectively, the first-level indicators are further divided according
to the main features of individual engineering cases and the indicator selection principle.
This allows for the initial acquisition of 20 second-level indicators.

The preliminary identification results of the prediction indicators will inevitably have
the phenomenon of repetition, cross-definition, and unclear level. For this reason, com-
bined with the basic principles of the construction project cost prediction indicator system
construction, the expert scoring approach is selected to eliminate duplicate indications
with little influence on the project cost projection. The numerical values used in the
five-level assessment approach are 1, 2, 3, 4, and 5. 20 feature indicators were evaluated
for their value based on specialists’ practical experience. To quantitatively examine the
experts’ viewpoints, the concentration and dispersion of their scores are used.

Ei =
1

p

5∑
j=1

Ejnij (1)

σi =

√√√√ 1

p− 1

5∑
j=1

nij (Ej − Ei)
2 (2)

where Ej denotes the value of the j-th level of importance, nij denotes the proportion
of experts agreeing on the importance level of the indicator, p denotes the total amount
of experts, and σi denotes the variation in expert ratings for the indicator’s importance.

Generally speaking, when Ei ≤ 3 and σi ≤ 1, it is considered that the index item
reaches the degree of importance and above. The results of expert scoring are shown
in Table 1 (the numbers corresponding to each level of importance in the table are the
number of experts who chose the item).

As can be seen from the above table, the concentration of experts’ opinions for ”5”,
”8” and ”12” are all greater than 3, and the dispersion of experts’ opinions is greater
than 1. After detailed communication with experts, it is determined that the above
three indicators have less influence on the project cost forecast, so these three redundant
indicators are deleted. Finally, the remaining types of feature indicators are 17.
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Table 1. Statistical Tables for Evaluating the Importance of Construction Cost
Forecasting Indicators

No. Extremely important Important Critical General Unimportant Concentration Ei Dispersion σi

1 23 8 2 1 1 1.12 0.32
2 23 7 3 1 2 1.15 0.43
3 21 8 4 3 2 1.39 0.59
4 22 6 5 2 2 1.42 0.66
5 4 3 6 9 3 3.62 1.15
6 23 9 2 1 1 1.12 0.33
7 21 11 1 2 2 1.15 0.31
8 3 5 5 10 12 3.59 1.17
9 17 9 3 2 1 1.52 0.69
10 25 3 3 1 1 1.12 0.47
11 19 11 3 2 1 1.29 0.44
12 3 6 4 8 4 3.62 1.15
13 16 13 3 2 1 1.45 0.59
14 11 2 4 2 2 1.75 0.76
15 2 3 3 9 14 3.82 0.94
16 15 11 2 3 1 1.62 0.74
17 17 13 2 1 2 1.42 0.67
18 18 10 4 2 1 1.42 0.63
19 22 7 3 1 2 1.25 0.59
20 31 3 2 2 2 1.14 0.11

2.2. Indicator dimensionality reduction based on PCA. For construction projects,
there are many factors affecting their project cost, and although this paper has initially
screened out 17 factors that are representative of them, there are still quantitative direct
or indirect relationships between the indicators. Some of the factors can be represented
by some existing factors, resulting in a large amount of overlap of sample information.
Theoretically, it seems that any one of the characteristic indexes may have a certain impact
on the construction project cost; however, in the actual cost prediction process, the staff
does not need to consider all the characteristic indexes one by one. On one hand, if all the
feature indicators are included in the input set during the modeling process, it will cause
the workload of the SVM model to rise sharply and affect the learning efficiency. On the
other hand, if some important influencing factors are neglected in the data input process,
it will lead to the lack of accuracy of the prediction model and poor prediction results, so
it is necessary to reasonably analyze the feature indicators to obtain the comprehensive
main influencing factors.

In summary, in order to make the construction cost prediction model based on SVM
achieve a better generalization effect, this paper proposes to use PCA combined with the
prediction model, and the comprehensive variables obtained by PCA are used as input
vectors of SVM, eliminating the high correlation between selected feature indicators, thus
overcoming the dimensionality catastrophe to a certain extent, and improving the pre-
diction accuracy of the model. PCA can prevent the correlation of different influencing
factors from affecting the model. PCA can prevent the correlation of different influenc-
ing factors from affecting the actual prediction, thus avoiding the over-fitting problem
caused by excessive input [24]. The 28 engineering data samples obtained from screening
were analyzed by PCA, and the equivalent transformation of a small number of principal
components was carried out by dimensionality reduction.

Based on the standardization, the corresponding matrix is constructed for a given
indicator value, as shown below:
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X =


x1,1 x1,2 · · · x1,17

x2,1 x2,2 · · · x2,17
...

...
. . .

...
x28,1 x28,2 · · · x28,17

 (3)

where the 29 × 17 matrix represents the 28 sample engineering data samples with 17
types of samples.

Combined with the correlation theory of matrices in SPSS, the correlation of variables
was tested using Bartlett’s spherical test and the corresponding KMO test [25], and the
results are shown in Table 2.

Table 2. Correlation Test Results

Test methods Norm Numerical value
KMO test KMO 0.658
Bartlett’s test of sphericity Approximate chi-square 457.3

Degrees of freedom 164
p 0.0002

In PCA analysis, the total variance, i.e., the cumulative contribution, is usually re-
quired to exceed 80% in order to comply with the requirements for the end of principal
components [26]. The design of this paper sets this value to 85%. Among the 17 feature
components, the first 9 features with high contribution rates are extracted, and their
vote responsibility rate is 85.530, which meets the overall explanation requirements. The
factor analysis of industrial building construction cost of crushed stone diagram is shown
in Figure 1, where it can be seen that the 9th factor turn is more obvious, so the first 9
components can be extracted.
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Figure 1. Factorization of gravel plots

3. Hybrid machine learning model-based construction cost prediction.
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3.1. Historical construction cost a priori model. In order to improve the accuracy
of construction cost prediction, the a priori information, as the first step of the predic-
tion algorithm, needs to be ensured in order to improve the quality of the subsequent
prediction.

Initialization is done with the initial historical data.

x
(0)
1 (k) =

k∑
m=1

x
(0)
1 (m) =

5∑
m=1

x
(0)
1 (m) (4)

where m is the data vector.
Create a data matrix and find the pooled mean based on the front and back neighboring

values of the sample data.

a(1)
[
x
(1)
1 (k + 1)

]
= −az

(1)
1 (k + 1) +

N∑
i=2

biz
(1)
i (k + 1) (5)

where a(1) is the parameter column; bi is the parameter column of neighboring points;

and z
(1)
i is the set mean.

Let a(1) = [a, b2, b3, . . . , bN ], according to the cost of construction project cost of the
previous years of the use of cost (labor, machinery, materials, and the total cost of the
total cost of construction) substitution into Equation (4), to get the total cost of the total

cost of the sample data x
(0)
N of the a priori model for the following.

x
(0)
N (k) =

k∑
m=1

bix
(1)
i (k)− az

(1)
1 (k) (6)

The a priori models corresponding to labor, machinery use, and material costs are then
calculated separately.

(1) A priori model of labor cost x
(0)
1 .

x
(0)
1 (k) = −0.52457z

(1)
3 (k) + 1.868196x

(1)
3 (k)− 0.16192x

(1)
4 (k)− 0.99745z

(1)
1 (k) (7)

(2) A priori model of machinery usage cost x
(0)
2 .

x
(0)
2 (k) = 1.445301x

(1)
2 − 1.377999z

(1)
2 (k) (8)

(3) A priori model of material costs x
(0)
3 .

x
(0)
3 (k) = 1.060936 + 0.01682z

(1)
3 (k) (9)

The a priori probability calculation model for the characteristics of labor, machinery
use, and material costs in construction cost can be obtained after the above process
calculation. The a priori information obtained can be used as the condition reference of
the subsequent prediction model. The comparison of the information greatly improves
the accuracy of the cost data prediction, and can effectively avoid the judgment error to
ensure the quality of prediction.

3.2. PSO-TWSVM algorithm design. TWSVM is an enhanced iteration of classical
machine learning, namely the SVM branch. It seeks for a set of non-parallel hyperplanes,
resulting in superior classification capabilities, making it ideal for addressing approxi-
mation sample classification challenges. TWSVM is more computationally efficient than
regular SVMs because it solves two SVM-type problems. The time complexity of SVM is
O(n3), and with the increase of the number of samples n, the amount of calculation will
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increase sharply. TWSVM learns two independent maximum boundary problems, and the
time complexity of each sub-problem is about O(n2), and the overall time complexity is
2O(n2). This means that the computation of TWSVM is linear, and with the increase of
sample number, the computation will grow more slowly. In addition, TWSVM learns two
sparse models, which are not only easier to explain, but also more efficient in prediction.
Generally speaking, TWSVM is significantly superior to standard SVM in learning effi-
ciency and prediction efficiency in big data scenarios, which is also an important reason
for its wide adoption.

Assume that the set of training samples in the n-dimensional real number space Rn

is (xj, yj), i = 1, 2, j = 1, 2, . . . ,m. The total number of samples is m = m1 + m2,
where m1 is the number of sample points in the positive category and m2 is the number
of sample points in the negative category. Then the method for seeking a nonlinear
TWSVM hyperplane is:

K(xT , CT )y1 + b1 = 0, K(xT , CT )y2 + b2 = 0 (10)

Similarly, the plane dividing the positive and negative classes is obtained by solving
the following two quadratic programs.

min
u1,b1,ξ

1

2

∥∥K(A,CT )u1 + eρ1
∥∥2 + c1e

T ξ s.t.− (K(B,CT )u1 + e2b1) + ξ ≥ e2, ξ ≥ 0 (11)

min
u2,b2,ξ

1

2

∥∥K(B,CT )u2 + e2b2
∥∥2 + c2e

T
1 ξ s.t.(K(A,CT )u2 + e2b2) + ξ ≥ e1, ξ ≥ 0 (12)

where e1 = (1, . . . , 1)T ∈ Rn, e2 = (1, . . . , 1)T ∈ Rh.
To further simplify Equation (11) and Equation (12), they are pairwise transformed.

max
α

eT2 α− 1

2
αTR(STS)−1RTα s.t. 0 ≤ α ≤ c1e2 (13)

max
γ

eT1 γ − 1

2
γTS(RTR)−1STγ s.t. 0 ≤ γ ≤ c2e1 (14)

R = [K(B,CT )e2], S = [K(A,CT )e1] (15)

Solving Equation (13) and Equation (14) gives:

(uT
1 , b1)

T = −(STS)−1RTα (16)

(uT
2 , b2)

T = −(RTR)−1STγ (17)

It can be seen that according to u1, u2, b1 and b2, the hyperplane for classification can
be obtained, then its classification decision function is:

classlabel = arg min
k=+1,−1

|K(xT , CT )uk + bk| (18)

PSO is a heuristic algorithm by simulating the collective behavior of pigeons or fish
schools. It is often used to solve optimization and machine learning problems. Let
W = (W1,W2, ...,Wn) denotes a population of n particles in S-dimensional space, Wi =
(Wi1,Wi2, ...,Win)

T denotes an S-dimensional vector of the i th particle with velocity
denoted as Vi = (Vi1, Vi2, ..., Vis)

T . In the iterative computation step, two particles are
searched for, the previous particle for finding its own optimal solution. The previous
individual extremum is denoted as Pi = (Pi1, Pi2, ..., Pis)

T ; the latter individual is the
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optimal solution for the race at this stage, i.e., the global optimal solution, denoted as
Pg = (Pg1, Pg2, ..., Pgs)

T .
Using the race-optimal solution and itself, the particle updates its own position and

velocity as follows:

P k
g = {P k

1 , P
k
2 , ..., P

k
n} s.t. f(P k

g ) = min{f(P k
1 ), f(P

k
2 ), ..., f(P

k
n )} (19)

Pi =
φ1Pid + φ2Pgd

φ1 + φ2

(20)

mbest = m

(
m∏
i=1

Pi

)
(21)

W k+1
id = τ (Pid − Pg)± γ

∣∣mbest −W k
id

∣∣× ln

(
1

u

)
(22)

where d = 1, 2, ..., S, i = 1, 2, ..., n; k denotes the number of iterations; φ1 = c1r1,
φ2 = c2r2; c1 and c2 denote the non-negative constants, i.e., the acceleration factors;
r1 and r2 denote two random numbers with distribution range [0, 1]; mbest denotes the
average optimal value in the population; γ denotes the dilation adjustment factor, which
is able to regulate the rate of convergence; u and τ denote two random numbers with
value range (0, 1).
It is found that TWSVM parameter setting is more difficult in the process of classifi-

cation and identification, so this paper uses PSO algorithm for parameter optimization
of TWSVM to further improve the accuracy of construction cost prediction. The PSO-
based TWSVM algorithm needs to determine three core parameters of SVM when solving
nonlinear problems, including the penalty factors (C1, C2) and the kernel parameter σ in
the Gaussian kernel function. Initialize a particle swarm, the position of its i-th particle
is represented as a 3D vector Xi = (xi1, xi2, xi3), xi1 and xi2 denote the two penalization
factors, and xi3 denotes the kernel parameter σ.

3.3. Construction cost prediction based on BP-PSO-TWSVM. In construction
cost prediction, this paper combines BP neural nets and TWSVM in order to utilize
the advantages of each of them. This combination aims to create a more powerful and
accurate prediction model. Traditional SVM-based construction cost prediction models
have limited ability to model complex nonlinear relationships. BP neural networks, which
are good at learning and capturing complex nonlinear relationships in the data, can help
to complement SVM in this regard, thus making the model more accurate in predicting
the construction cost.

Multi-layer feed-forward neural networks trained via error back-propagation are known
as BP neural networks, which is good at capturing and learning complex nonlinear rela-
tionships in data, but may suffer from overfitting problem and local optimization problem.
Compared with SVM, TWSVM is a more advanced supervised learning algorithm, which
searches for the optimal segmentation hyperplane in the data feature space to distinguish
between different data classes and shows good generalization ability for small samples
and nonlinear problems. In this way, the BPNN acts as a feature converter to capture
complex patterns in the data. In this way, the high fitting ability of BP neural network
and the strong generalization ability of TWSVM can complement each other to improve
the performance of the whole construction cost prediction model. The main steps of the
hybrid model proposed in this paper are as follows:
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(1) Historical data is preprocessed by PCA technique for dimensionality reduction to
form sample matrix. The dataset is divided into training and testing sets using cross-
validation (k -fold cross-validation).

(2) Set up a three-layer BP neural network with one Sigmoid function hidden layer.
Randomly initialize the weights and biases. Nonlinear feature learning of PCA processed
input sample engineering data using BP neural network;

(3) Set the value range of parameters C and σ, and initialize a population X =
{X1, X2, · · · , Xm} of m particles;

(4) Use the trained BP neural network to forward propagate the training and test sets
to obtain the activation values of the last hidden layer before the output layer as a new
feature set for TWSVM. The new feature set obtained from the BP neural network is
utilized to train the TWSVM model;

(5) Calculate particle fitness in conjunction with the training dataset and compare.
Iterate repeatedly until the end condition is satisfied (adaptation value is minimized);

(6) Output the optimization hyperparameters C and σ and assign them to the TWSVM
prediction model;

(7) Train the TWSVM model with the test set and input the predicted sample data for
model prediction to obtain the optimal results.

4. Experimental results and analysis.

4.1. Test environment. In order to verify the effectiveness of the construction cost
prediction method of Kijen BP-PSO-TWSVM, the test selects the first-line high-rise res-
idence as the prediction object. This kind of high-rise residential project has a long cycle
and large input capital, and its cost index change has a close relationship with the macro
environment. Usually, the cost of construction project contains a lot of detailed features,
and a complete set of construction cost data is composed of multiple sub-cost features.
The proportion of sub-features is related to the role of the building, the shape and the
basic data. Twenty of the thirty-eight projects served as training samples for the learning
and training process, and the eight remaining data sets were evaluated with the trained
model, according to the sample matrix that was collected earlier. We chose three differ-
ent approaches, LS-TWSVM [29] and BP-PSO-TWSVM, for project cost prediction and
simulation so that we could more thoroughly test the suggested hybrid model’s efficacy.

4.2. Analysis of the accuracy of the prediction model. The prediction results of
selecting the construction project cost within the year 2013-2023 are shown in Figure 2.
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Figure 2. Stability curves for different clustering methods
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It can be seen that among all the methods, only the prediction results of the mentioned
BP-PSO-TWSVM model have the highest degree of agreement and the closest change
amplitude between the prediction results and the real values, which indicates that the
accuracy of the prediction results is higher. On the other hand, there is an obvious gap
between the prediction results of the other two prediction models and the real values,
with a lower similarity of the curves and a larger degree of deviation. Comprehensive
comparison of the results shows that the proposed BP-PSO-TWSVM model is more prac-
tical and has a higher accuracy in predicting the cost of construction projects in practical
applications.

4.3. Stability Analysis of Prediction Models. The impact of various algorithms on
the predictive performance of the model is determined by the relative error δ and the
mean absolute percentage error (MAPE ).

δ =
yi − ŷi
yi

(23)

MAPE =
1

n

n∑
i=1

|δ| × 100% (24)

where yi and ŷi denote the actual and predicted cost values of the i-th sample, and n
is the number of test samples.

Figure 3 displays the discrepancies between the anticipated and actual results of the
test samples for the three distinct prediction models. It can be seen that the distribution
interval of the prediction relative errors of BP neural network model is [-1.37%, 5.65%];
the distribution interval of the prediction relative errors of LS-TWSVM model is [-2.05%,
3.58%]; and the distribution interval of the prediction relative errors of BP-PSO-TWSVM
model is [-4.65%, 2.11%]. Therefore, the proposed hybrid machine learning model out-
performs the BP and LS-TWSVM models in terms of the stability of construction cost
prediction and obtains high robustness. In summary, the BP-PSO-TWSVM prediction
model has better guidance for construction project cost and is more applicable to the
prediction of pre-construction project cost.
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Figure 3. The discrepancies between the anticipated and actual results
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5. Conclusion. This work proposes to build a hybrid machine learning model by com-
bining TWSVM and BP neural network for construction work cost prediction. On the
basis of expert scoring, combined with the composition of construction work cost and its
influencing factors, 28 examples of engineering data samples with 17 attribute indicators
were initially constructed. At the same time, principal component analysis was used to
downscale the attribute indicators to obtain 9 comprehensive indicators with higher con-
tribution rate, thus reducing the sample complexity and improving the learning efficiency
of the model. In order to further improve the accuracy of the prediction model, the a
priori information and probability of different characteristics of data in the historical data
samples of construction cost are collected. In construction cost prediction, it is proposed
to combine BP neural net and TWSVM to obtain a more powerful and accurate hybrid
prediction model. The experiment selects a first-line high-rise residence as the prediction
object. The results show that the proposed hybrid machine learning model outperforms
the BP and LS-TWSVM models in terms of stability of construction cost prediction and
obtains high robustness. Therefore, the BP-PSO-TWSVM prediction model is more suit-
able for the prediction of pre-construction project cost.
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