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Abstract. Nowadays, countries worldwide are actively promoting the development of
new energy electric vehicles, and the performance and lifetime of power batteries, as the
core components of new energy EVs, play a crucial role in the reliability and sustainability
of the vehicles. Therefore, accurate prediction of EV batteries’ Remaining Useful Life
(RUL) is necessary. However, the gradual degradation of battery capacity in the early
stages often makes early battery RUL prediction more challenging. This work proposes
a novel hybrid method to predict battery RUL with fewer battery cycles, introducing the
Efficient Channel Attention mechanism. The proposed method could better capture the
subtle changes in the early stage of the battery, thereby providing improved capability
to capture contextual information and enhancing the accuracy of the RUL prediction.
Additionally, the Adaptive Dropout is introduced into the model to capture the essential
attributes of battery lifespan from various complex factors battery for the RUL prediction.
Extensive experiments are conducted on a real dataset, and the results demonstrate that
the proposed method effectively improves the prediction performance with fewer cycles
and achieves an earlier prediction.
Keywords: electric vehicle, battery remaining useful life, Efficient Channel Attention,
adaptive dropout, early prediction
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1. Introduction. Global environmental challenges are growing increasingly severely. Na-
tions are acknowledging the adverse impact of conventional fuel vehicles on the environ-
ment. Governments, automakers, and technology firms are intensifying their investments
in and promotions of new-energy electric vehicle technologies to curb carbon emissions
and enhance air quality [1, 2]. According to pertinent data, most electric vehicle (EV)
fire incidents stem from battery pack thermal runaway, accounting for 38.1% of all safety
accidents. Thus, accurately projecting EV batteries’RUL [3] beforehand becomes im-
perative to avert thermal runaway accidents involving electric vehicles. Currently, most
RUL predictions are based on cycle data exhibiting initial capacity degradation exceeding
5% [4–7].

However, the development and production of batteries with prolonged cycle life usually
span months or even years, potentially causing feedback performance delays. Kristen
et al., for instance, suggested that utilizing early cycle data for battery RUL prediction
could expedite the battery development cycle. Manufacturers could promptly validate
fresh manufacturing processes and evaluate batteries for their anticipated lifespans [8].
Nonetheless, given the nonlinear nature of battery degradation influenced by cycle counts
and usage conditions, precise RUL prediction poses a daunting task. This challenge
becomes even more pronounced when predictions hinge solely on early cycle data. Early-
stage battery degradation typically occurs sluggishly, followed by accelerated deterioration
at specific intervals or after a particular number of cycles [9]. However, directly feeding
substantial raw data into deep networks proves impractical due to inherent noise and
redundant information, which could lead to sluggish model convergence and diminished
prediction accuracy. The challenge is particularly pronounced in capturing subtle shifts
during the early battery stages when capacity degradation isn’t readily apparent. Figure
1 showcases the capacity degradation process of a power battery across a cycle, in which
the insignificance of capacity degradation in the battery’s early stages is evident. In this
work, we proposed a novel method to predict RUL with fewer cycles and to forecast
battery life early.

Figure 1. Battery capacity degradation curves.

Model-based and data-driven approaches are two kinds of approaches to predicting the
RUL of batteries. The model-based approaches aim to develop a mathematical model
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to depict the degradation of battery dynamically, providing a precise portrayal of the
battery degradation process. For instance, Zheng et al. [10] proposed estimating the
RUL of lithium-ion batteries using a physical degradation model and a traceless Kalman
filter . Similarly, Liu et al. [11, 12] suggested utilizing kinetic and physical models based
on the electrochemistry of lithium-ion batteries to simulate their current and voltage
characteristics.

Developing accurate battery RUL prediction models generally necessitates profound do-
main knowledge, particularly a comprehensive of battery degradation mechanisms [13,14].
Model-based approaches, however, often lack the flexibility to capture uncertainties stem-
ming from external environment changes, variations in operational conditions, and mate-
rial and manufacturing differences. In contrast, data-driven approaches involve analyzing
historical battery cycling data to build models inferring RUL through machine learning
techniques. For example, Peng et al. [15] developed a unified feature selection method
called Local Structure Preservation based on Feature Selection (LSPFS) to improve the
robustness and accuracy of forecasting under unsupervised and supervised learning condi-
tions on a lithium-ion battery dataset. In LSPFS, the local structure of the original data
is constructed based on the similarity between data points, while representative features
are selected based on their ability to preserve the local structure. In addition, by design-
ing different local structures through the data’s local and actual degradation information,
the approach could unify supervised and unsupervised feature selection and then learn
from them jointly under a common framework.

Wu et al. [16] employed a feedforward neural network to establish a relationship between
battery RUL and variations in constant current charging voltage profiles under distinct
cycles. Zhang et al. [6] attempted training Long Short-Term Memory networks to grasp
the long-term dependency between degraded capacities. Early battery RUL prediction
remains elusive. Despite their higher flexibility and applicability, data-driven methods
still have undisclosed mechanisms and information transfer rules. Additionally, a criti-
cal challenge arises from the potential inaccuracies or entirely wrong predictions due to
insufficient or biased battery data. In recent years, integrating model-based and data-
driven methods has emerged as a pivotal research focus for enhancing accuracy in battery
RUL prediction. This hybrid approach optimally leverages the respective strengths of
both methods. For instance, Xu et al. [17] proposed a hybrid deep network model for
early battery RUL prediction. It combines manual features with domain knowledge and
latent features learned from deep networks to enhance early RUL prediction performance,
Nonetheless, the model lacks substantial attention to subtle data changes and doesn’t
dynamically adapt neuron retention or discard rates based on actual battery conditions,
resulting in limited generalization and accuracy, especially with a constrained number of
cycles.

To address the challenges, a comprehensive approach is proposed in this work, which
integrates expert knowledge features from the battery domain and potential attributes for
neural network learning. Leveraging the Convolutional Neural Networks (CNN) encoder,
local statistical features are extracted and channeled into an Efficient Channel Atten-
tion (ECA), which captures subtle battery changes, enhancing feature aggregation and
resulting in accurate RUL prediction with fewer cycles. Simultaneously, local statistical
features grounded in domain knowledge are harnessed and introduced into a fully con-
nected network comprising interconnected layers. Further, the proposed model integrates
two adaptive dropout layers following the CNN encoder and the fully connected network.
These layers dynamically regulate the number of neuron outputs based on data features.
Additionally, fully connected layers are employed to map the interconnected features to
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the ultimate target. The main contributions of this work could be summarized as follows:

1. A hybrid prediction model is proposed to integrate the features of domain knowledge
and statistics features, and the ECA mechanism is introduced to capture slight
changes from early cycles and enable earlier RUL forecasts.

2. An adaptive dropout technique is introduced to adaptively process diverse data in
various scenarios during the training and bolster prediction accuracy.

3. Extensive experiments were conducted on a real-world dataset, showing that the
proposed model significantly improves the prediction capability. Compared with the
existing related models, which require more than 100 cycles, the proposed model
improves the prediction accuracy with fewer cycles and then achieves an early RUL
prediction.

The rest of the paper is organized as follows. Section II reviews some related works
on battery RUL prediction. Section III describes the details of the proposed method,
including the ECA module to capture the early battery minutiae changes and adaptive
dropout retention features and the structure of the hybrid model for early RUL prediction
of fast-charging power batteries. Section IV describes the dataset, experimental environ-
ment, evaluation metrics, and experimental details. Section V discusses and analyzes the
experimental results. Section VI summarizes the work and suggests directions for future
work.

2. Realted work. For manufacturers of new energy electric vehicles, accurate prediction
of the RUL of batteries holds the potential to enhance the design of longer-lasting and
more efficient products, resulting in improved user experience and product performance.
In recent years, research teams have made significant strides in predicting battery RUL.
To illustrate, Hu et al. [18]conducted a comprehensive review of battery RUL prediction
techniques, focusing on recent advancements in model-based, data-driven, and hybrid
model algorithms. They diligently analyzed and compared these methods’ particulars,
advantages, and limitations. Similarly, Xing et al. developed an integrated model to
characterize battery capacity degradation. This model leverages the analysis of experi-
mental data and incorporates empirical exponential and polynomial regression models to
track battery degradation trends throughout its life cycle.

Additionally, they employed a particle filter algorithm for online adjustment of model
parameters [19]. Moreover, Pang et al. [20] simultaneously employed a Kalman filter and
an expectation-maximization algorithm to estimate battery capacity degradation. Zhang
et al. [6] on the other hand, proposed utilizing a long and short term memory neural
network for battery RUL prediction. This network captures potential long-term depen-
dencies among degraded battery capacities and is coupled with Monte Carlo simulation to
generate battery RUL predictions. Along similar lines, Bloom et al. [21], and Broussely et
al. [22] employed semi-empirical models to predict performance and capacity losses during
the early stages of the battery. In another approach, Liu et al. presented an optimized
Nonlinear degenerate-auto regressive time series model for estimating Li-ion battery RUL,
which facilitates multi-stage prediction of battery capacity degradation state.

Furthermore, to enhance the representation capability of classical particle filtering
(Sampling Importance Resampling) for uncertainty, a Li-ion battery RUL fusion estima-
tion framework [4] is devised, utilizing the regularized particle filter. This methodology is
also applied to the battery RUL fusion estimation framework [23]. Ardeshiri and Ma [24]
proposed the approach of a gated recurrent unit recurrent neural network, which extracts
ample statistical features from voltage, current, and temperature measurements in each
cycle. Additionally, the authors employed linear correlation and random forests to reduce
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the feature dimension further. Despite demonstrating the effectiveness of machine learning
techniques in predicting battery RUL, these methodologies heavily rely on data from the
battery degradation curve, specifically needing to ascertain the point at which battery
degradation initiates. Typically, model training involves utilizing a cyclic data volume
spanning from 40% to 70% of the complete battery life cycle [18, 25–28] . Nevertheless,
this approach that hinges on the degradation curve may harbor several limitations. Ini-
tially, it necessitates amassing and employing a significant amount of cyclic data, which
can be challenging in scenarios where the battery’s lifespan is extensive or data collec-
tion costs are high. Moreover, due to the requirement of identifying zones where battery
degradation commences for training, subtle changes occurring in the battery’s early stages
might elude detection, thereby making it hard to predict the early RUL.

In recent years, hybrid methods combining model-based and data-driven approaches
have amalgamated the relative advantages, emerging as a prominent research focus in
battery RUL prediction. Broadly speaking, hybrid methods can be categorized into three
types based on diverse processing techniques:

(1) Enhancing the performance of filtering methods. For instance, He et al. amalga-
mated data from various sources through information fusion grounded in the Dempster-
Shafer theory. Subsequently, they employed Bayesian Monte Carlo to update the model
parameters and formulated an RUL prediction model for lithium-ion batteries using the
accessible battery capacity monitoring data [25]. Zhang et al. [29] introduced an Improved
Unscented Particle Filter approach for RUL prediction of Li-ion batteries, rooted in the
Markov chain Monte Carlo principle. This method employs Markov chain Monte Carlo
to address the RUL prediction of Li-ion batteries, including the resolution of the sample
depletion issue in the Unscented particle filter algorithm.

(2) Generating future observations. For instance, Chang et al. employed the Unscented
Kalman Filter algorithm to produce the initial error sequence. They then analyzed the
outcomes of the Complementary Ensemble Empirical Mode Decomposition algorithm to
form a new error sequence, which was subsequently employed to predict errors through
the relevance vector machine regression model. This new error sequence is created by ex-
amining the decomposition outcomes of the original error sequence acquired through the
Complementary Ensemble Empirical Mode Decomposition algorithm. The new error se-
quence is then employed to forecast prediction errors using the relevance vector machine
regression model, consequently rectifying the prediction outcomes of traceless Kalman
filtering [30]. Similarly, Song et al. [31] proposed a hybrid approach that integrates an
iterative nonlinear degradation-auto regressive model and a particle filter algorithm. This
approach enhances long-term prediction performance by incorporating nonlinear degrada-
tion factors and iterative parameter updating, utilizing the capacity prediction outcomes
as the measurement function within the particle filter algorithm.

(3) Data enhancement. For instance, Yu et al. [32] proposed a method that combines
multiscale logistic regression and Gaussian process regression. Empirical mode decompo-
sition is utilized to separate the global degradation, local regeneration, and various fluctu-
ations of the battery capacity time series. Residuals representing the overall degradation
trend were modeled using a variable moving window LR model. A ground-penetrating
radar with lag vectors is suggested for recursive estimation of local regeneration and fluc-
tuations. As previously mentioned, researchers in battery RUL prediction have primarily
employed data from NASA [33], CALCE [34], or private battery cycling data. These
datasets are predominantly acquired under constant current constant voltage cycling con-
ditions, with the batteries tested at a constant temperature.
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However, operating conditions exhibit high variability in most battery-powered appli-
cations, and batteries experience numerous dynamic degradation mode shifts. Further-
more, owing to rapid advancements in battery technology, the performance and lifespan
of batteries have considerably improved. Consequently, investigating the aging behavior
of batteries under dynamic and demanding operating conditions has gained significant
importance. Moreover, Xu et al. [17] introduced a hybrid model that integrates domain
knowledge features and potential features acquired from neural networks for early RUL
prediction. Nevertheless, the model struggles to detect subtle changes in the early bat-
tery stage, curtailing its early prediction capabilities. Additionally, it necessitates manual
tuning of the failure rate, introducing certain uncertainties.

3. Methodology.

3.1. Overview. For the early battery RUL prediction problem, this work proposed a
hybrid model to combinate feature patterns and domain knowledge, as shown in Figure
2, including a CNN encoder to deal with the local statistical features and a fully con-
nected network to deal with the domain knowledge features. In this work, we combined

Figure 2. Hybrid model structure.

an expert-based domain method proposed by Qing et al. [17] that extracts expert-based
domain knowledge features with latent features learned by neural networks. We utilize
the data set collected by Kristen et al. [8] along with 20 statistical features: Var dQ 80 10,
min dQ 80 10, mean dQ 80 10, slope Qd cycle 71 80, Qd 2, Qd 80, min ir cycle 2 80,
ir diff cycle 80 2. By incorporating the ECA mechanism to focus on subtle changes in
important features, we achieve enhanced battery RUL prediction efficiency using fewer
cycles and improved prediction accuracy.

Additionally, this work introduces an adaptive dropout mechanism to dynamically ad-
just the failure probability of neurons based on the data’s characteristics. Meanwhile,
the proposed method addresses the issue in Qing et al.’s work [17] about the dropout
mechanism with a fixed probability for neuron failure. Consequently, the approach better
retains features and enhances model training efficiency and generalization ability.

3.2. Enhanced Channel Attention. Considering the nature of early battery changes,
this work aims to capture these initial battery alterations and contextual information
accurately. To achieve this, a lightweight ECA mechanism is integrated as depicted in
Figure 3. The mechanism is employed to generate the channel attention, which dynami-
cally adjusts the kernel size to align with the channel size of the nonlinear mapping using
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rapid one-dimensional convolution. The improvement contributes to enhanced computa-
tional efficiency and the generalization capability of CNN, and then the model facilitates
precise battery RUL prediction with a reduced number of cycles. The module employs a

Figure 3. Efficient channel attention.

global average pooling operation to process the input data for extracting global features.
Then, a fast one-dimensional convolution operation with dimensions K ∗ 1 and activation
with the Sigmoid function are integrated to obtain the channel weights.

K = φ(C). (1)

In the module, the K is adaptively determined based on the channel dimension C, and
the channel weights W are calculated as shown in Equation (2).

W = σ(C1DK(y)). (2)

where C1D indicates 1D convolution and the method in Equation (2) is called by the
ECA module, which only involves K parameters. The weights are employed to multiply
with the corresponding elements of the original input features to produce the final output
features.

Output = C ∗W. (3)

3.3. Adaptive Dropout. The dropout algorithm, known as a method to sparse net-
works, improves model accuracy by training multiple subnetworks and shows a high
training time complexity. However, the model suffers from problems such as corrupted
learning features and the difficulty in manual parameterization. For this reason, this work
proposed an adaptive dropout algorithm as shown in Figure 4.

The algorithm adaptively estimates the probability values in the traditional dropout
algorithm based on the distribution and characteristics of the data to better retain the
features and improve the training efficiency and generalization ability of the model. where
the outputs of the attentional mechanism and the domain feature fully connected layer
are used as the input x of the adaptive dropout, respectively, and the activation value a
is obtained by applying the activation function ReLU to the input x:

a = ReLU(x). (4)

P = softmax(a). (5)

where the importance score is mapped to between 0 and 1 using the softmax function to
obtain the retention probability P for each neuron.
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Figure 4. Adaptive dropout network diagram.

amasked = a⊙ p. (6)

where ⊙ denotes the multiplication of each element. In the step, the activation value a is
multiplied by the retention probability p to obtain the final activation value amasked,

3.4. Hybrid Model. To extract as much useful information as possible from the mea-
surement data, we propose a hybrid model that combines domain knowledge-based fea-
tures and local statistical features as inputs, as shown in Figure 2. The local statistical
features are first extracted using a CNN encoder E, where the one-dimensional CNN ar-
chitecture of the encoder is used to capture temporal dependencies between time series
data, thus achieving higher computational efficiency than recurrent neural networks and
more stable backpropagation properties.

The maximum pooling layer is also used to retain essential features and improve model
accuracy. Next, the critical features are fed into the ECA mechanism [35]. The ECA
mechanism layer is employed to capture small changes in the battery and improve the
feature aggregation, enabling accurate RUL prediction results to be obtained with fewer
cycles. Simultaneously, the domain knowledge is tapped into to acquire local statistical
features with dimensions n ∗ l ∗m, where n represents the number of samples, l signifies
the total number of statistical features, and m indicates the number of loops. The selected
domain features rooted in expert knowledge are input into a fully connected network D,
comprising a sequence of fully connected layers with dimensions n ∗ p, where n represents
the number of samples and p denotes the number of features specific to the chosen domain.
Lastly, the high-dimensional features are mapped, flattened, and interconnected. To

counteract overfitting, two adaptive dropout layers [36], are incorporated after the CNN
encoder E and the fully connected network D, prior to the cascade operation. This results
in an automatic adjustment of the number of neuron outputs based on data features.
Subsequently, the fully connected layer is utilized to map the interconnected features
to the final target. The optimization of the hybrid model involves minimizing the loss
concerning the true label y.

4. Experiments and Results.

4.1. Datasets and experimental environmental. To evaluate the proposed method,
the work employed a dataset provided by the Massachusetts Institute of Technology,
Stanford University, and the Toyota Research Institute [8]. The dataset consists of 124
lithium-iron-phosphate/graphene batteries that record the cycle life of the batteries under
different conditions by intentionally changing the charging conditions. The batteries were
used for approximately 150 to 2300 cycles (mean cycle life of 806, standard deviation of
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377). Voltage, current, battery case temperature, and internal resistance were measured
during the cycles.

There are three sets of battery data in this dataset: a training set, an initial test set,
and an aging test set. The training set and initial test set are battery pack data sets
collected over the same period, and the aging data set is a battery pack data set collected
after approximately one year. Table 1 shows the experimental hardware and software
configuration. More detailed information about this battery dataset can be found at
https://data.matr.io/1/.

The versions of Python and PyTorch used in this paper’s experiment are 3.7.12 and
1.13.0. The experiments were done on a Linux server equipped with an NVIDIA GeForce
RTX 3090 graphics card with 24GB of video memory, 128GB of RAM, and an Intel Core
i7-11700 processor with 8 cores and 16 threads.

4.2. Assessment of indicators. In this work, we use Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE) to evaluate the model’s performance.
RMSE is defined in Equation (7), and MAPE in Equation (8).

RMSE =

√√√√ 1

n

n∑
i=1

(ȳi − yi)2. (7)

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ȳi − yi
yi

∣∣∣∣ . (8)

4.3. Experimental result. The results of the proposed method are shown in Figure 5,
from which it can be seen that our algorithm used in this paper does not show a significant
difference between RMSE and MAPE at measurements of 80, 90, and 100 cycles. The
method in this work is effective in delaying the deterioration of the predicted RUL effect.
Therefore, choosing a smaller number of cycles for the experiment can predict RUL earlier
and improve the safety of the battery. In order to assess the effectiveness of the proposed
hybrid model, we compared it with the various methods listed in Table 1 and Table 2.

Table 1. RMSE and MAPE values for different methods on the initial test set

Methods Cycle Index
Initial test set

RMSE MAPE
Elastic-V [8] 100 138.39 13.19
Elastic-D [8] 100 170.35 10.99
Elastic-F [8] 100 117.64 9.25
SVR-V [37] 100 170.72 14.72
NN-F [38] 100 116.54 9.13
LSTM [6] 100 166.87 18.05

CNN-LSTM [39] 100 176.63 14.85
GRU-RNN [24] 100 127.65 9.94
PSR-SVR [40] 100 191.83 20.3
Qing et al. [17] 100 114.05(SD:2.47) 8.54(SD:0.07)

Ours 80(↑ 20%) 116.28(SD:1.16) 8.56(SD:0.05)

In this work, we use RMSE and MAPE to evaluate the 11 models in Table 1 and Table
2 on both the initial and aging test sets. The models Elastic-V, Elastic-D, and Elastic-F
represent the ”variance”, ”discharge”, and ”full” feature set trained elastic networks, re-
spectively. Elastic networks are trained on the ”variance”, ”discharge”, and ”complete”
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Table 2. RMSE and MAPE values for different methods on the Aging test set

Methods Cycle Index
Aging test set

RMSE MAPE
Elastic-V [8] 100 196.01 11.41
Elastic-D [8] 100 179.64 14.2
Elastic-F [8] 100 225.72 12.85
SVR-V [37] 100 226.79 12.11
NN-F [38] 100 225.83 12.87
LSTM [6] 100 380.85 22.66

CNN-LSTM [39] 100 375.47 25.25
GRU-RNN [24] 100 356.31 34.17
PSR-SVR [40] 100 404.57 32.93
Qing et al. [17] 100 177.88(SD:1.77) 11.31(SD:0.23)

Ours 80(↑ 20%) 180.56(SD:1.54) 11.29(SD:0.18)

feature sets, respectively [8]. Additionally, we evaluate other machine learning-based
methods such as SVR [37], NN [38], LSTM [6], CNN-LSTM [39], GRU-RNN [24], PSR-
SVR [40], and Qing et al. [17], which are also tested using datasets provided by the
Massachusetts Institute of Technology (MIT), Stanford University, and the Toyota Re-
search Institute (TRI) [8]. The results are shown in Figure 6 and Figure 7. Based on
the experimental results, the results of predicting the battery RUL using only the first 80
cycles are better than the results of predicting the battery RUL using the first 100 cycles
for the following models: Elastic-V, Elastic-D, Elastic-F, SVR, NN, LSTM, CNN-LSTM,
GRU-RNN and PSR-SVR. Using the first 80 cycles to predict the battery RUL, the results
in this paper are close to Qing’s results using the first 100 cycles to predict the battery
RUL, and even the standard deviation values are smaller than Qing’s [17] method.

113.5 115.3 116.28

8.5 8.56 8.56

178.89 180.28 180.56

11.26 11.29 11.29
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Figure 5. The effort of different cycle times on RUL prediction.

5. Discussion. Experimental results show that Different feature sets usually result in
different performances on the two test sets. For example, the results in Table 2 show that
Elastic-V performs better in terms of RMSE and MAPE on the Aging test set compared
to Elastic-F. As the results in Table 1, Elastic-D performs worse on the Initial test set.
SVR-V uses the same feature set as Elastic-V, but performs worse. These results show



Early RUL Prediction for Fast-charging Power Battery Based on Hybrid Modeling 473

0 50 100 150 200 250 300 350 400 450

Elastic-V

Elastic-D

Elastic-F

SVR-V

NN-F

LSTM

CNN-LSTM

GRU-RNN

PSR-SVR

Qing et al

Ours

RMSE 

Method

Aging test set Initial test set

Figure 6. Different algorithm RMSE varies.
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Figure 7. Different algorithm MAPE varies.

that selecting appropriate domain knowledge features for the model is essential. It also
shows that simple models (e.g., Elastic-V) have poor generalization ability and cannot
achieve good performance on the subtest dataset. Deep neural networks (e.g., LSTM and
CNN-LSTM) also performed poorly on both test sets, which is not surprising since they
were initially designed to capture capacity degradation curves, a degradation process that
is very weak in the early stages of battery life. The results of GRU-RNN and PSR-SVR
show that in early prediction of remaining battery life, it is challenging to generate typical
features from basic features (such as discharge voltage).

In this work, we use only the test set of the first 80 cycles of the power battery, and
the results show that the proposed model significantly outperforms the baselines on both
the initial test set and the aging test set, even though that the baseline models employ
more than 100 cycles of data. The results indicate that the proposed model improves the
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generalization ability and delays the effectiveness of the deterioration of the prediction
results. The results show that the RMSE and MAPE values of this work outperforms
those of Qing et al. [17]. The prediction accuracy and standard deviation values are
better than those of the model proposed by Qing et al. [17], and the cycle number is
significantly decreased by 20%.

6. Conclusions and Future Work. This work proposed a hybrid model based on the
fusion of domain knowledge and statistics features, which owns the significant advantage of
interpretability and feature extraction capability. In the model, the ECA mechanism and
adaptive dropout are integrated to capture slight changes in the early stages of the battery,
helping the model better handle noise and uncertainty during training and improving the
stability of the prediction model. As a result, we are able to use fewer cycles to obtain more
accurate RUL prediction results, reduce over-reliance on specific samples, and improve the
generalization.

Although the experimental results improve in terms of accuracy and generalization, the
domain knowledge features in this work are usually designed for specific battery types
and specific operating conditions. These features must be recalibrated or remodeled
when the battery type or operating conditions change. Therefore, it will be crucial to
integrate electrochemical, thermal, and mechanical information into RUL predictions as
it can be better adapted to real-world application scenarios. In addition, it will be crucial
to investigate the application of RUL algorithms to promote the reuse of retired power
batteries to protect the environment.
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