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Abstract. Assembled concrete buildings usually have better thermal insulation and seal-
ing properties, which can effectively reduce building energy consumption and carbon emis-
sions during the production phase. By studying and predicting the energy-saving perfor-
mance of assembled concrete buildings, it can provide designers with a more accurate as-
sessment of energy consumption. However, the energy-saving performance of assembled
concrete buildings is affected by a variety of factors, and the prediction of energy-saving
needs to take into account the interactions of multiple factors, which requires a high level
of model accuracy. Therefore, this work proposes a deep recurrent neural network-based
energy efficiency prediction for assembled concrete buildings. First, the construction
process of assembled buildings is divided into five stages according to the modelling prin-
ciples. According to the characteristics of each stage, the calculation methods of carbon
emissions of the five sub-parts were established, and the carbon emission factors corre-
sponding to different subjects were sorted out, which were used as the theoretical basis of
the subsequent carbon emission prediction model. Then, Antisymmetric Recursive Neu-
ral Network (ARNN) is used to build a deep learning environment for building energy
efficiency prediction. Meanwhile, after analysing the working principle of the attention
mechanism in deep learning, it is proposed that Global Attention Mechanism (GAM)
is introduced in ARNN, so that the model pays more attention to the part of the input
sequence with important information. Finally, the proposed GAM-ARNN model is com-
pared with a variety of other prediction models through 15 assembly building case base
data. The experimental results show that the proposed GAM-ARNN model is the optimal
model, and the error between its predicted data and the measured data of the carbon emis-
sion factor method is 1.19%, which is significantly lower than that of other prediction
models.
Keywords: Assembly building; Energy efficiency prediction; Deep recurrent neural net-
work; ARNN; Attention mechanism

1. Introduction. With the intensification of global climate change and energy crisis,
the construction industry is under tremendous pressure to reduce energy consumption
and minimize environmental impacts [1, 2]. For this reason, energy-efficient buildings
have become an important trend in global building development, and assembled concrete
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buildings have attracted much attention due to their fast construction, low energy con-
sumption, and low life cycle cost. Assembled buildings are constructed by prefabricating
building components in a factory and then transporting them to the site for assembly, as a
way to shorten the construction cycle and reduce energy loss and environmental pollution
caused by on-site construction [3]. However, accurately predicting the energy consump-
tion of assembled concrete buildings plays a crucial role in achieving energy-saving goals,
guiding energy-saving design and evaluating energy-saving effects [4]. Therefore, investi-
gating how to accurately predict the energy consumption of assembled concrete buildings
has become an important issue in this field [5], especially predicting the energy consump-
tion under the changing building operation environment and uncertain natural climate
conditions.

An in-depth study of energy efficiency prediction of assembled concrete buildings can
not only help building designers and builders to optimize building design and select more
efficient materials and technologies [6, 7], but also provide empirical support for policy
makers to develop more reasonable energy efficiency standards and codes. In addition,
because of the tremendous advancement of technology in artificial intelligence in recent
years, how to use advanced machine learning models, such as BP neural networks, to
improve the accuracy and generalization ability of prediction models has become a hot
research issue in related fields. The application of such methods not only promotes the
development of intelligent building technology, but also has important theoretical and
practical significance in promoting sustainable building practices and achieving the goal
of green and low-carbon development. Therefore, this study aims to explore the use of
deep recurrent neural networks to establish an energy-saving prediction model for assem-
bled building projects and carry out example measurements through Python software
modeling, with the aim of accurately and effectively predicting carbon emissions in the
materialization phase.

1.1. Related work. At present, foreign scholars have conducted a large number of stud-
ies on the management of building energy efficiency [8, 9, 10], mainly focusing on the
following carbon emission measurement and influence factors.

The term ”building construction process” refers to the process of constructing a struc-
ture from the ground up. This process includes the stages of producing and processing
building materials, transporting building materials, and constructing the building on-site.
One of them is the manufacturing stage of construction materials, which is responsible
for a greater share of the total carbon emissions across the whole life cycle. One of the
most important aspects of energy efficiency management is the investigation of methods
for reducing carbon emissions throughout the building construction process. Jaillon and
Poon [11] studied the energy-saving aspects and environmental impacts of an assembled
building and concluded that the environmental impacts were 72% during the raw material
production phase and 23% during the use phase. The construction and end-of-life recy-
cling phases contributed very little to the total impact as they accounted for 1% and 3%
respectively. Matic et al. [12] discussed the carbon emissions of a single assembled build-
ing using the carbon emission factor method. In order to simplify the carbon emissions of
the physical phase, they were converted into those of the manufacturing of construction
materials, building materials transportation and construction building, and the emission
reduction effect of projects with different assembly rates was analyzed according to the
consumption of reinforcement bars, concrete consumption, etc. Duan et al. [13] used
the Life Cycle Assessment (LCA) to establish a quantitative measurement model of car-
bon emissions, and classified the physical phase into the production of raw materials,
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manufacture of components or materials processing, transportation on-site assembly and
construction.

Research has found that the key point of efficient energy saving and carbon reduction
is to implement the factors that affect energy consumption and carbon emission. Most
of the studies have analyzed a certain part of energy consumption and carbon emissions
from a whole life cycle perspective. Liu et al. [14] proposed an energy saving and carbon
emission reduction influencing factor system based on Building Information Modelling
(BIM) by combining construction dynamic simulation and using IT tools to analyze the
energy saving performance in terms of building design. Tan et al. [15] constructed a BIM
based conceptual model for carbon emission measurement in the whole life cycle [16] of
assembly projects. Fitriaty and Shen [17] used Revit software to build a model to estimate
the energy consumption by predicting the number of photovoltaic panels required for a
net-zero-energy building in order to achieve a balanced energy consumption. Xu and
Yuan [18] improved the envelope design parameters, optimized the floor plan layout and
utilized natural ventilation to effectively reduce the carbon emissions of the building. Sun
[19] developed a building energy consumption prediction model based on the BP neural
network, and the results showed that the relative error between the predicted output of
the BP neural network and the simulated value was within 4%.

Deep Recurrent Neural Networks (DRNN) have a significant advantage over traditional
BP neural networks in terms of their ability to model time-series data [20, 21]. DRNNs are
particularly good at dealing with time-series data because they can convey information in
the temporal dimension, thus capturing the time-dependence and dynamics in the data.
DRNNs can continually update their state to reflect the latest received information, which
is particularly valuable for real-time energy consumption prediction. In BP networks, it
is usually necessary to retrain the entire model to adapt to new data, which is a more
static process [22].

1.2. Motivation and contribution. Since building energy consumption prediction of-
ten involves time-series data (e.g., historical energy consumption records, time-dependent
environmental variables, etc.), DRNN are able to model such dependencies more accu-
rately. DRNN are able to automatically extract and learn higher-order features from raw
data through their multilayer architecture. In the context of energy efficiency prediction
for assembled concrete buildings, this capability is particularly beneficial in discovering
and modeling complex and non-linear patterns in energy consumption behavior, which
are difficult to capture by BP neural networks. Therefore, this paper computationally
uses DRNN for energy efficiency prediction of assembled concrete buildings. The main
innovations and contributions of this work include:

(1) Aiming at the problem of theoretical support for the carbon emission prediction
model, this paper makes modifications on the basis of the theory of carbon emission
coefficient, gives the calculation method of carbon emission of five subcomponents, and
analyzes the carbon emission factors corresponding to human beings and machinery.

(2) For the problem of selecting the influencing factors of the energy-saving model,
the literature analysis method is used to initially find the factors affecting the carbon
emissions of assembled buildings. Then, according to the results of the correlation test,
the strength of the correlation between the influencing factors and carbon emissions is
judged. Finally, 8 key influencing factors are screened out from 23 influencing factors of
carbon emission.

(3) Aiming at the problem of low prediction accuracy of traditional BP neural network
models, it is proposed to use Antisymmetric Recursive Neural Network (ARNN) to build
a deep learning environment for building energy efficiency prediction. At the same time,
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it is proposed that Global Attention Mechanism (GAM) is introduced in ARNN. Factors
such as floor area and number of building floors are used as input variables of the GAM-
ARNN model, and the unilateral carbon emissions from building production buildings are
used as output indicators.

2. Principles related to energy efficiency in assembled concrete buildings.

2.1. Calculation of carbon emissions during construction. The energy saving mod-
elling of assembled concrete buildings mainly addresses the issue of carbon emissions. In
the construction process of assembled buildings, the types of materials and data sources
are not easy to determine, and there are many unpredictable situations, so the carbon
emission study is a cumbersome process. The accurate collection of carbon emission data
must be based on the characteristics of the assembled building, and it must be clear that
the key point of measurement is the determination of the calculation method and carbon
emission factor in the construction process. Assembled concrete buildings generate carbon
emissions at multiple stages throughout their life cycle.

Directly calculating the carbon footprint of a building at different stages will help to
further evaluate its sustainability. In this paper, we refer to the formulas used in life
cycle assessment and use the energy consumed in the production, transportation and
construction of materials, combined with their carbon dioxide equivalents, to obtain the
carbon emissions at different stages. The basic principle of the carbon emission factor
method is as follows:

C = A× f (1)

where C denotes total carbon emissions; A denotes consumption data for each phase
of activity; and f denotes the carbon emission factor.

In this paper, the carbon emission coefficient is used as the theoretical basis to study
the carbon emission of assembled concrete buildings. According to the specific needs of
the research project, modifications are made on the basis of the theory of carbon emission
coefficient, as follows.

C = C1 + C2 + C3 + C4 + C5 (2)

where C denotes the total carbon emission during the construction process; Ci repre-
sents the carbon emission in the stage i, i = 1, 2, . . . , 5.
It can be seen that the carbon emissions of assembled concrete buildings during the

construction process mainly involve the following stages.
(1) Raw material production stage
The raw material production phase includes the production of concrete raw materials

(cement, sand, aggregates, etc.), which are usually accompanied by energy consumption
and emissions. This phase is calculated as follows:

C1 =
∑

Qa × EFa (3)

where C1 denotes the total carbon emission in the production stage of raw materials;
Qa denotes the demand of the a-th building material; EFa denotes the carbon emission
factor of the a-th material.

(2) Raw material transport phase
The transport of raw materials from the place of production to the site consumes a

certain amount of energy, for example, the process of transporting materials such as
cement and aggregates. In the study, secondary transport and vehicle return trips are
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ignored. The default length of construction materials is 40 kilometres when the actual
distance of transport of building materials is uncertain.

C2 =
∑

Qb × Lb × EFb (4)

where C2 denotes the total carbon emission at the material production stage; Qb denotes
the consumption of the b-th building material; Lb denotes the transport distance of the
b-th building material; and EFb denotes the carbon emission factor of the b-th building
material.

(3) Production stage of assembled concrete components
The production phase of assembled concrete components includes the production and

installation process of assembled concrete components, which involves energy consumption
and emissions, especially for production processes and equipment. BIM software can be
used to derive formwork quantities, component quantities and reinforcement quantities.
The consumption data for the prefabricated component production stage is obtained by
converting according to the corresponding quotas. Carbon emissions at this stage include
the centralised processing of ready-mixed concrete at the component plant.

C3 = Qc × EFc +
∑

Qd × EFd +
∑

Qe × EFe (5)

where C3 denotes the total amount of carbon emissions in the prefabricated compo-
nent production stage; Qc denotes the number of working days of assembly workers in
the prefabricated component production stage; EFc denotes the carbon emission factor
of assembly workers in the prefabricated component production stage; Qd denotes the
consumption of construction materials of category d; EFd denotes the carbon emission
factor of construction materials of category d; Qe denotes the consumption of equipment
and machines of category e; EFe denotes the carbon emission factor of equipment and
machines of category e.
(4) Precast transport phase
Carbon emissions from the transport of prefabricated components refer to the horizontal

transport of prefabricated components on the road from the component plant to the
construction site. Because prefabricated components are large in size and are not easy to
transport, load and unload, they are usually transported close to the component plant.
According to the survey results, the reasonable transport distance is 50-120 km, and in
this study, the basic transport distance is 100 km by default, regardless of the type of
components.

C4 =
∑

Qf × Lf × EFf (6)

where C4 denotes the total carbon emission in the prefabricated parts transport stage;
Qf denotes the consumption of the f -th construction material; Lf denotes the transport
distance of the f -th construction material; and EFf denotes the carbon emission factor
of the f -th construction material.

(5) On-site assembly construction stage
Carbon emissions during the on-site assembly construction phase are created by the on-

site construction of concrete and the on-site assembly construction of precast elements.

C5 = Qg × EFg +
∑

Qh × EFh +Qi × EFi +
∑

Qj × EFj (7)

whereQg denotes the number of working days of workers in the concrete pouring project;
EFg denotes the carbon emission factor of workers in the concrete pouring project; Qh

denotes the consumption of mechanism in the category h of concrete pouring project;
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EFh denotes the carbon emission factor of machinery and equipment in the category
h of concrete pouring project; Qi denotes the number of working days of workers in
the precast installation project; EFi denotes the carbon emission factor of workers in
precast component installation projects; Qj denotes the consumption of equipment and
machinery of category j in precast component installation projects; EFj denotes the
carbon emission factor of equipment and machinery of category j in precast component
installation projects.

2.2. Carbon emission factors. ”Carbon emission factor” means a numerical coefficient
used to calculate and estimate direct or indirect greenhouse gas emissions from an activity.
For example, if the combustion of one ton of coal produces about 3 metric tons of carbon
dioxide, the carbon emission factor for coal is 3 tons of CO2 per ton of coal. The carbon
emission of construction machinery is related to its frequency of use, working hours and
fuel type. Transport equipment includes all kinds of lorries, cranes, transport ships,
etc., which are used for transporting raw materials and equipment in the construction
process. Carbon emissions from transport equipment mainly originate from exhaust gas
emissions from fuel combustion, including carbon dioxide, nitrogen oxides, and so on. For
different types of machinery, their carbon emission factors will vary, so the type of energy
consumed needs to be considered in the calculation process. The carbon emission factors
for machinery and transport equipment are calculated as follows:

EFN =
∑

QNi × EFNi (8)

where QNi denotes the i-th consumed energy type; EFNi denotes the carbon emission
factor of the i-th energy source.

3. Construction of energy efficiency prediction models for assembled concrete
buildings.

3.1. Analysis of influencing factors for energy saving modeling. In this work, the
carbon emission factor method is applied to analyse the energy efficiency of 15 assembled
concrete building cases, and the most influential energy efficiency influencing factors are
summarised, thus providing input parameters for the subsequent deep recurrent neural
network prediction model.

This paper uses literature analysis to accurately and objectively find the factors affect-
ing carbon emissions from assembly buildings. Firstly, the scope of the carbon emission
problem of assembled buildings is clarified, as well as the related keywords. For exam-
ple, the keywords ”assembly building”, ”carbon emission”, ”influencing factors”, etc. are
used to search relevant literature. Then, academic databases (e.g. Google Scholar, Web
of Science, Scopus, etc.) or library resources were used to search for literature related to
carbon emissions from assembly buildings. Search according to the keywords and filter the
literature related to this work. Read the screened literature, focusing on the descriptions,
analyses and discussion sections of the literature on the factors affecting carbon emissions
from assembly buildings. Summarise and refine the carbon emission influencing factors
of assembled buildings involved in each literature, including factors in various aspects of
the production stage, transport stage, construction stage and use stage, and categorise
and summarise them.

The correlation between the influencing factors and carbon emissions of assembled
buildings was examined using the Spearman rank correlation coefficient of SPSS.20 soft-
ware. The linear relationship between them was assessed by calculating the correlation
coefficient. According to the results of the correlation test, the strength of the correla-
tion between each influence factor and carbon emissions is judged. When the significance
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p < 0.05, the correlation is considered significant, indicating that the factor is significantly
related to carbon emissions. Eventually, 8 key influencing factors were screened out from
23 influencing factors of carbon emissions, as shown in Table 1.

Table 1. Key Influences on Energy Efficiency and Carbon Reduction

Serial number Variable name Factor name
1 X1 Building area
2 X2 Storey
3 X3 Building height
4 X4 Labour consumption
5 X5 Reinforcing steel consumption
6 X6 Concrete consumption
7 X7 Prefabricated building block
8 X8 Mechanical consumption
9 Y Unilateral carbon emissions

3.2. Deep recurrent neural network. DRNN is a neural network model that combines
deep learning and RNN for processing sequence data and capturing long-term dependen-
cies in sequences [23, 24]. Compared to traditional RNN models, DRNN increases the
depth of the model by stacking multiple recurrent layers, which improves the model’s
ability to model sequence data. DRNN creates a depth structure by stacking multiple
recurrent layers (RNN layers or LSTM layers) together [25]. Each loop layer accepts the
hidden state of the previous moment as input and outputs the hidden state of the current
moment, by which the sequence data is processed step by step.

Antisymmetric Recursive Neural Network (ARNN) is a neural network structure for
processing sequence data [26], which is mainly used to learn long-term dependencies in
sequence data. Compared with the traditional RNN or LSTM, ARNN solves the problems
of gradient vanishing and gradient explosion to a certain extent, and is able to better
capture the features in sequence data. Therefore, this paper tries to adopt ARNN to
achieve energy efficiency prediction of assembled concrete buildings.

ARNN is a tree-based neural network that represents the syntactic structure of an input
sequence by recursively combining subtrees. Each node has a vector representation of its
own features and builds up the overall representation by combining the representations
of the sub-nodes. ARNN takes full advantage of ordinary differential equation stability
to capture long-term dependencies in time series data. An ordinary differential equation
is a special kind of dynamic system that contains only one variable, namely time t. The
first order ordinary differential equation is shown below:

h′(t) = f(h(t)) (9)

When time t ≥ 0, then h(t) ∈ Rn, Rn denotes the n-dimensional Euclidean space; and
f is the mapping from the open domain in Rn+1 to Rn.

The problem of solving a function h(t) given an initial condition h(0) is known as the
initial value problem for a differential equation. However, for most ordinary differential
equations there is no analytical solution. It is common to use numerical methods to
discretise a continuous problem, and then find a numerical solution for the discrete nodes
as an approximate solution to the ordinary differential equation. The forward Euler
method is the most representative numerical solution method.

In the forward Euler method, if the derivative of the function h(t) at the point t− 1 is
replaced by a two-point equation.
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h′(t− 1) ≈ h(t)− h(t− 1)

ε
(10)

where ε is a positive number that converges to 0 infinitely. Replacing h(t) with an
approximation of ht, the initial value problem becomes.{

ht = ht−1 + εf(ht−1)

h0 = h(0)
(11)

where ε is called the step size.
Then, for the ordinary differential equation h′(t) = tanh(Wh(t)), the approximate

solution obtained using the forward Euler method is.

ht = ht−1 + ε tanh(Wht−1) (12)

Equation (12) can be viewed as a RNN without input data. Here ht is the hidden
state at step t, W is the model parameter, and ε is the hyperparameter. This provides a
general framework for designing recurrent neural network structures via discrete ordinary
differential equations.

In numerical analysis, stability theory studies the stability of solutions of ordinary
differential equations when the initial conditions are subjected to small perturbations.
That is, a solution to an ordinary differential equation is considered stable when the long-
term behaviour of the system is independent of the initial conditions. Ideally this means
that the real part of the eigenvalues of the Jacobi matrix is made to approximate 0, i.e. the
system is critically stable. Under such conditions, the system is able to remain stable while
maintaining long-term dependence on the inputs. The eigenvalues of the antisymmetric
matrix, on the other hand, are all 0 or purely imaginary, so that the antisymmetric matrix
can be used to construct the ideal ordinary differential equation.

h′(t) = tanh
(
(Wh −W T

h )h(t) + Vhx(t) + bh
)

(13)

where (Wh −W T
h ) is the antisymmetric matrix.

Discretising Equation (12) using the forward Euler method gives ARNN as follows:

ht = ht−1 + ε tanh
(
(Wh −W T

h )ht−1 + Vhxt + bh
)

(14)

where h(t) ∈ Rn is the hidden state at moment t; x(t) is the input term at moment
t; Wh ∈ Rn×n, Vh ∈ Rn×m and bh ∈ Rn are the parameters of the network; ε is a
hyperparameter indicating the learning rate of the neural network.

Since the antisymmetric matrix Wh−W T
h has only n(n−1)

2
degrees of freedom, it can be

parameterised as an upper triangular matrix with the main diagonal elements all being
0 when implementing the building energy efficiency prediction model, which reduces the
model parameters of ARNN by half, and makes the learning efficiency higher.

3.3. ARNN with global attention mechanism. In this paper, ARNN is used to
implement energy efficiency prediction for assembled concrete buildings. However, ARNN
may suffer from the local attention problem when dealing with long sequence data, i.e.,
the model only focuses on part of the input data to play a role in the prediction, while
ignoring other important information. Therefore, this paper proposes to introduce the
global attention mechanism into ARNN and proposes GAM-ARNN. GAM-ARNN model
can dynamically adjust the attention weights according to different parts of the input
data in order to capture the key features in the whole sequence. The GAM model can
help the ARNN model to pay more attention to the parts of the input sequence that
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have important information, thus improving the learning efficiency and generalisation
capability, as shown in Figure 1.

GAM

Attention layer

sh

th

ta

tc

th

Figure 1. Global attention mechanism

The global attention mechanism adds an attention layer on top of ARNN, where h̄s is
the source hidden state, ht is the current target hidden state, at is the alignment weight,
ct is the context vector, and h̄t is the attention hidden state. The attentional model
calculates the similarity between the current target state ht and all source states h̄s at
time t using a scoring function as follows.

score(ht, h̄s) = vTa tanh

(
Wa

[
ht

h̄s

])
(15)

Two fully connected layers are used to implement this network in the scoring function,
where the output of the first layer and the output of the second layer correspond to the
dimensions of the ARNN hidden layer. After obtaining the scores, the alignment weights
at can be computed using the softmax function.

at(s) =
exp

(
score(ht, h̄s)

)∑
s′
exp

(
score(ht, h̄s′)

) (16)

The vector ct can be obtained by computing the weighted average of the weights at and
the hidden state h̄s. A simple fully connected layer is used to combine the information of
both the given target hidden state ht and the vector ct to find the attention hidden state
h̄t.
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h̄t = tanh (Wc[ct;ht]) (17)

For the calculated attention hidden state h̄t, the prediction probability is generated by
a softmax layer, so as to complete the task of predicting the energy saving of the building.

p(yt|y<t, x) = softmax
(
Wsh̄t

)
(18)

3.4. GAM-ARNN based energy saving prediction. The GAM-ARNNmodel, which
consists of normalised data inputs, was used. Factors such as floor area and number of
building floors are used as input variables to the GAM-ARNN model, and the unilateral
carbon emissions during the construction of the assembly building are used as output
indicators. Training in the GAM-ARNN model and comparing the prediction results of
this model with the actual values are carried out to prove the effectiveness of the proposed
deep recurrent neural network with real data.

The variability between the carbon emission factors and the individuality between the
samples of each assembly building project, such as the number of floors in layers, floor
area in planes, and prefabrication rate in percentages, may cause the data results to be
imprecise and reduce the accuracy of the model. Normalising the training data was done
to reduce the variability of each category factor.

x̄i =
xi − xmin

xmax − xmin

(19)

Normalisation was applied to the raw data of the influencing factors and carbon emis-
sions involved in the prediction based on Equation (18), making the data critical between
[0, 1]. The physical carbon emissions of the assembled buildings obtained after normali-
sation were used as training objects for the GAM-ARNN model.

X1, X2, X3, X4, X5, X6, X7, X8 are taken as input factors. The descriptions of the
eight input factors are shown in Table 1. The GAM-ARNN model obtains the weight
coefficients of the output values by continuously adjusting the parameters of the output
layer and the input layer during the operation, making the overall gradient in a decreasing
trend, and on the basis of which, we get the expected carbon emissions from the assembly
building project. The energy-saving prediction model of assembled concrete buildings
based on GAM-ARNN is shown in Figure 2.

4. Experimental results and analyses.

4.1. Experimental configuration and training. In order to obtain the data required
to build the carbon emission prediction model for the assembly building chemical phase,
a total of 15 assembly building case base data were collected in this work. Based on the
quantities obtained from the BIM model, the consumption of building materials in the
production phase of the demonstration project was converted. During the construction
of the project, the transport process of building materials is mainly the carbon emissions
formed by the energy consumption generated by the use of transport vehicles to transport
the building materials used in the cast-in-place phase from the production site to the
mixing workshop.

Based on the above GAM-ARNN model, 12 out of 15 sets of case data are selected
as the training set and the remaining 3 sets are used as the test set. The Pytorch 1.8
framework is used in the experiments to implement the model proposed in this paper,
and training and testing are performed. The operating system is Ubuntu 18.04, the GPU
is NVIDIARTX 3090, the processor is Intel(R) Xeon(R) Glod 5218 R, and the memory
is 64 G. The parameters of the GAM-ARNN model are shown in Table 2.
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Figure 2. GAM-ARNN based energy efficiency prediction model for assembled
concrete buildings

Table 2. Training parameters for the GAM-ARNN model

Parameters Numerical value
Learning rate 0.0001
Batch size 32
Arnn number of hidden layers 512
Loss function Cross-cutting
Optimiser Adam
Number of generations 50

The trends of loss values versus accuracy for the training and test sets are shown in
Figure 3 and Figure 4, respectively.
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Figure 3. Change in value of losses
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Figure 4. Change in value of accuracy

4.2. Analysis of carbon emission prediction results. The unilateral carbon emis-
sions of assembled buildings predicted by a number of different models are compared and
the results are shown in Table 3.

Table 3. Unilateral Carbon Emissions from Assembled Buildings Predicted by
Different Models

Predictive modelling Unilateral carbon emissions t Error (%)
Carbon emission factor method 1058.07 /
DNN 1039.96 -8.87
Bi-LSTM 1029.22 -6.43
GRU 1019.32 -5.51
CNN+LSTM 1009.97 -4.61
ARNN 983.93 -3.74
GAM-ARNN 1058.07 -1.19

It can be seen that the error between the data predicted and analysed by the GAM-
ARNN model and the measured data by the carbon emission factor method is 1.19%,
which is significantly lower than the other prediction models.The comparison between the
ARNN model and the GAM-ARNN model is regarded as an ablation experiment of the
attention mechanism module. It can be seen that the prediction accuracy of the model
with the added global attention mechanism is higher than that of the model without
the added attention mechanism. This is due to the fact that the GAM-ARNN model’s
performance improvement is greater for long sequence sample data, proving that the
attention mechanism can help the ARNN model to pay more attention to the parts of the
input sequence with important information, thus improving the generalisation ability for
different influencing factors.

5. Conclusion. In this work, a method for predicting energy efficiency of assembled
concrete buildings based on the GAM-ARNN model is proposed. Modifications were
made based on the theory of carbon emission factor, and the calculation method of carbon
emission of five subcomponents was given. The carbon emission factors corresponding to
human and machinery were analysed. Literature analysis was used to initially find the
factors affecting the carbon emission of assembled buildings. Then, based on the results
of the correlation test, 8 key influencing factors were screened out from 23 influencing
factors of carbon emission. ARNN is used to build a deep learning environment for
building energy efficiency prediction. At the same time, it is proposed to introduce GAM
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in ARNN. 8 key influencing factors are used as input variables of GAM-ARNN model,
and unilateral carbon emissions during the construction of assembled buildings are used as
output indicators. The experimental results show that the error between the GAM-ARNN
model and the carbon emission factor method is 1.19%, which is significantly lower than
other prediction models. The ablation experiment of the attention mechanism module
verifies the effectiveness of the global attention mechanism.
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