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Abstract. The traditional equipment for tailpipe emission monitoring basically adopts
the static fixed-point detection mode. Not only does this detection mode fail to ensure
accurate analysis of vehicle exhaust emissions during dynamic operation, but its measure-
ment results are also susceptible to interference from human intervention or the detection
environment. Therefore, a remote vehicle exhaust gas detection system based on an inte-
grated deep learning model is proposed. Firstly, the TLZ7x-EasyEVM development board
designed based on the SOM-TLZ7x core board is used as the on-board hardware platform,
and the FS704UM network module is interconnected with the development board through
the GPIO interface to realise wireless remote data transmission. The NHA-502 exhaust
gas analyser was used to detect the components of CO, CO2, O2 and NOx in the ex-
haust gas, and the performance parameters of the vehicle were monitored in real time
through the OBD-II interface. Then, in order to further improve the efficiency of feature
information extraction by sliding window, an incremental computation-based feature in-
formation calculation method is proposed to extract feature information from preprocessed
vehicle exhaust data. Secondly, using the extracted seven types of feature information as
inputs in the tailpipe monitoring centre, the LSTM neural network, which has the ability
to remember long-term temporal information, is used as the weak predictor of integrated
learning, and the weak predictor is weighted and combined with the strong predictor using
the AdaBoost integrated learning algorithm. The effectiveness of the proposed system is
verified by experiments on an Audi A4 vehicle. The results show that the proposed system
achieves an accuracy of 91.33% for the detection of abnormal exhaust conditions.
Keywords: Environmental monitoring; Vehicle exhaust; Remote detection; Integrated
learning; Deep learning; LSTM; AdaBoost

1. Introduction. Currently, the most commonly used means of vehicle exhaust gas de-
tection is the static fixed-point detection method [1, 2]. However, due to the actual
operating conditions of the engine is complex and variable, coupled with the influence of
ambient temperature, fuel quality, wear and tear, component corrosion aging and other
factors. The traditional static fixed-point detection mode not only can not ensure accu-
rate analysis of vehicle exhaust emissions in the dynamic operation process [3], but also its
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measurement results are susceptible to human interference or the interference of the detec-
tion environment, resulting in part of the emissions exceeding the standards of the vehicle
through the detection of driving on the road. In the long run, the strength of automobile
exhaust emission control will inevitably become stronger and stronger, therefore, in order
to effectively make up for the shortcomings of the static fixed-point detection method,
the research and development of remote dynamic on-board automobile exhaust emission
detection technology that can detect the exhaust emission status of the automobile when
it is running has become very urgent. However, due to the use of cost, technology and
other aspects of the reasons [4, 5], the current market related to the study of practical
technology is still in the primary stage, there is still a large distance from the market
application.

The OBD (On-Board Diagnostics) system determines whether the current vehicle emis-
sions are normal or not based on the electrical parameters of various types of sensors and
actuators obtained from the vehicle’s electronic control system [6, 7], and will immediately
illuminate the malfunction light once an abnormality is detected. However, the OBD sys-
tem essentially adopts the method of indirect measurement of engine exhaust emissions.
This method is relatively inexpensive and easy to install, but the accuracy and reliability
of its measurement results are difficult to accurately assess. Today, when the global vehi-
cle ownership reaches hundreds of millions of scale, the tailpipe emission is a very large
value, so it is very necessary to continue to improve the accuracy of tailpipe emission
measurement [8]. Currently, fixed-point static analyses are mainly used to improve the
measurement accuracy of tailpipe emission pollutants. Commonly used methods include
electrical and electrochemical methods. For example, thermal conductivity chromatogra-
phy [9], layer analysis [10], and optical absorption spectroscopy [11].

With the rapid development of computer technology, machine learning algorithms are
widely used in various fields, and exhaust gas detection is no exception. Traditional
exhaust gas detection methods usually rely on chemical analysis and manual operation,
which is time-consuming and labour-intensive, and the accuracy of the results needs to be
improved. Machine learning algorithms, however, can automatically learn the rules from
a large amount of data, so as to detect and analyse the composition of vehicle exhaust
in real time and accurately. Based on the labelled exhaust data, supervised learning
algorithms (e.g., support vector machine, decision tree, etc.) or deep learning algorithms
(e.g., convolutional neural network) can be used to train a model that can accurately
identify the components of exhaust gas. The purpose of this work is to build a vehicle
hardware device with 4G network module for data acquisition and remote transmission,
and deploy the trained model in the vehicle or roadside exhaust monitoring centre to
achieve real-time and accurate monitoring of vehicle exhaust, which provides the basis for
subsequent environmental management and decision-making.

1.1. Related Work. Currently, the main task of existing exhaust gas analysis techniques
is the quantitative measurement of pollutants emitted by engines.

Li et al. [12] proposed an SVM-based algorithm for identifying abnormalities in exhaust
emissions of petrol engines in response to the problem that the exhaust emissions of
petrol engines change nonlinearly with the change of working conditions. The algorithm
is based on a genetic algorithm to intelligently optimise the SVM parameter structure,
which improves the effectiveness of the exhaust gas identification model. Neural network is
also a commonly used pattern recognition method for nonlinear fitting modelling. Bu [13]
proposed an automotive engine exhaust condition analysis and fault diagnosis model based
on Elman neural network, which takes the relationship between the emission components
of the engine and the misfire condition as the training samples, and achieves the exhaust
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gas identification of the engine in normal, mild misfire and severe misfire conditions. Ceviz
et al. [14] found that by recording the real-time dynamic data during vehicle operation,
and then applying the data flow analysis method based on the one-dimensional wavelet
analysis function to comprehensively analyse the input and output signal data and the
working state of the sensors and actuators in the engine control system, it is possible to
effectively determine whether the engine emissions are exceeding the standard and the
corresponding causes of failure. However, the engine itself in a variety of different working
conditions of the emission law is different. For example, under idling conditions, CO and
CO2 emissions are high and NOX emissions are low; under heavy load conditions, NOX
emissions are high. Therefore, only measuring the pollutant emissions of an engine under
a particular operating condition is not comprehensive. It is necessary to combine with
the real-time working conditions of the engine in order to obtain a more objective and
effective emission status. At present, the research work in this area is still relatively small.

In the context of deep learning, Chung and Kim [15] proposed a real-time vehicle
emission monitoring model that utilises data collected by low-cost gas sensors. The model
uses a Long Short-Term Memory (LSTM) network to learn patterns in time-series data
to predict the concentrations of different gases. Experiments have shown that the model
has high accuracy in predicting the major tailpipe components such as CO, CO2 and
NO. However, the model is mainly for known types of gases and has limited ability to
detect novel pollutants. In addition, the data quality may be affected to some extent due
to the use of low-cost sensors. Yu et al. [16] proposed an interpretable deep learning
model for estimating vehicle emissions. The researchers used an attention mechanism
and visualisation techniques to enable the model not only to accurately predict emissions
but also to explain the main factors affecting emissions. This provides valuable insights
for developing emission reduction policies and optimising vehicle design. However, the
training and deployment process of the model is relatively complex and requires significant
computational resources. In addition, there may be a trade-off between interpretability
and accuracy, requiring further optimisation of the model architecture.

1.2. Motivation and contribution. Existing exhaust gas detection methods mainly
use a single deep learning method, a single integrated learning method, coupled data pre-
processing methods, etc., which have poor prediction accuracy, stability and generalisation
performance. However, AdaBoost [17, 18] is able to better fit complex data distributions
by combining multiple weak classifiers, and the integrated model usually improves the
prediction accuracy of the concentration of tailpipe components compared to a single
LSTM model. Since the AdaBoost algorithm does not have many assumptions on the
distribution of the training data, the integrated model may have better adaptive ability
and generalisation performance when dealing with exhaust data from different scenarios
and car models compared to the single LSTM model [19, 20]. The main innovations and
contributions of this work include:

(1) An in-vehicle hardware platform based on the TLZ7x-EasyEVM development board
was constructed, and 4G network transmission was carried out through FS704UM. The
NHA-502 tail gas analyser was used as the signal input platform for the on-board tail gas
platform.

(2) In order to further improve the efficiency of feature information extraction by sliding
window and to solve the problem of excessive memory occupied by the device during traffic
processing, a feature information calculation method based on incremental computation
is proposed, which can be carried out on a dynamic number of data streams.

(3) In order to effectively improve the problems of low accuracy and insufficient gen-
eralisation ability of real-time detection of exhaust gas dynamics, an improved LSTM
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model based on the integrated learning algorithm is proposed. In the exhaust gas mon-
itoring centre, seven types of extracted feature information are used as inputs, and the
LSTM neural network with the ability to remember long-term temporal information is
used as the weak predictor of integrated learning, and the weak predictor is weighted and
combined with the strong predictor using the AdaBoost integrated learning algorithm.

2. System hardware selection.

2.1. System platform. The on-board hardware platform is a specialised computer sys-
tem, which mainly consists of a central processor, internal and external memories and
input/output devices. In order to improve its development efficiency, it is generally
preferable to develop based on mature embedded development boards. When the sys-
tem’s hardware and software are all debugged, then the hardware platform is finally
customised with circuit boards.

TLZ7x-EasyEVM is a development board designed based on the SOM-TLZ7x core
board [21]. The backplane is designed as a 4-layer board with a lead-free process and
provides users with a test platform for the SOM-TLZ7x core board. The SOM-TLZ7x
core board adopts the general-purpose MIPSII instruction set, with a main frequency of up
to 266 MHz. The SOM-TLZ7x core board integrates all kinds of mainstream internal and
external memory interfaces (such as SDRAM interface, NOR FLASH/ROM, and NAND
FLASH interface), and supports interfaces such as UART, USB 2.0, CAN, Camera, SD,
and Gigabit Ethernet.

To facilitate pre-debugging and post-customisation, the core board of the SOM-TLZ7x
mainly integrates the central processor, main memory, external memory and clock source.
The backplane integrates serial/parallel interfaces, USB interface, 10/100M LAN inter-
face, four-wire resistive touch screen interface, LCD interface and other I/O resources.
The appearance of the SOM-TLZ7x core board development board is shown in Figure 1.

12V DC POWERPRESET     BOOT       Micro SD         CAN

SWITCH

USB TO UART

USB HOST

Ethernet 

Figure 1. SOM-TLZ7x Development Board
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2.2. 4G network interface. A large number of mature 4G network interface expan-
sion modules have been released in the market, and in this paper, we directly use the
FS704UM [22]. The FS704UM is fully compatible with the TLZ7x-EasyEVM hard-
ware and software. The FS704UM network module is interconnected with the TLZ7x-
EasyEVM development board through the GPIO interface. The FS704UM network mod-
ule is packaged in a pin 7PIN (2.54mm) package as shown in Table ??.

The power supply is 5-16V DC and the peak power needs to be more than 8W. The
serial port is TTL level (default 3.3V). RDY: high level means not connected to the server,
low level means connected to the server. RSP: pull down for 3∼15 seconds to restore the
factory settings. Normal use only needs to connect VIN, GND, TX and RX. The principle
of power supply part is shown in Figure 2.

Table 1. FS704UM Network Module Pin Definitions

Pinout Name Hidden meaning
1 RSP Restore factory settings
2 RDY Socket connection status indication
3 PEN Core board power enable
4 RX Data reception
5 TX Data transmission
6 GND Power input negative
7 VIN Power input positive, supports 5-16V

Figure 2. Principle of power supply part

2.3. Gas analyser equipment. In this paper, the NHA-502 model tail gas analyser [23]
is used as the signal input platform for the vehicle tail gas platform. The NHA-502 model
tail gas analyser is a device used for vehicle tail gas analysis, which is usually used for
detecting and analysing the components of exhaust gases emitted by vehicles. This model
of tailpipe analyser usually contains a variety of sensors and detection modules, which
can detect CO, CO2, O2, NOx and other components in the exhaust gas, and evaluate the
emissions of the vehicle based on these parameters. The main parameters of the NHA-502
tailpipe analyser are shown in Table 2.

2.4. Engine operating data acquisition. The OBD-II (On-Board Diagnostics II) in-
terface is a standardised automotive diagnostic interface [24], which is usually located
in the cabin of a vehicle and is used to connect a diagnostic tool or device in order to
carry out vehicle troubleshooting, performance monitoring and data logging. Through
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Table 2. Main parameters of tail gas analysing equipment

Parameters Descriptions
Measurement range HC: 0 ∼ 9,999 ppm; CO: 0 ∼ 10%; CO2: 0 ∼ 18%;

O2: 0 ∼ 15%; NO: 0 ∼ 5,000 ppm
Measurement accuracy HC: ±10 ppm (absolute), ±5% (relative);

CO: ±0.3% (absolute), ±5% (relative);
CO2: ±0.5% (absolute), ±5% (relative);
O2: ±0.1% (absolute), ±5% (relative);
NO: ±5% (absolute), ±4% (relative)

Response time HC, CO, CO2, O2: ¡10 seconds; NO: ¡5 seconds
Preheating time 8 minutes (3-minute rapid measurement)
Power supply AC 220V ±10%, 50Hz ±1Hz
Net weight 9 kg
Sizes 300mm (W) × 200mm (H) × 250mm (D)

the OBD-II interface, this paper can monitor the performance parameters of the vehicle
in real time, such as fuel consumption rate, mileage, and emissions [25], and record and
analyse these data, as shown in Table 3.

SAE J1850 BUS+

Chassis/Signal Ground

ISQ15765-4 (CAN Bus High）
ISO9141 (K-Line)

+12 (Always ON)

ISO15765-4 (CAN Bus Low)

ISO9141 (L-Line)SAE J850 BUS-

Figure 3. OBD-II Diagnostic Interface Pin Definitions

3. Data pre-processing. As the sensor device is easy to be interfered by the external
environment in the process of collecting the automobile exhaust data, it produces a certain
amount of noise or different data dimensions. In order to make the collected vehicle
exhaust data easy to process and can reflect the actual results more realistically, the
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PCA dimensionality reduction method [26] is applied to pre-process the collected vehicle
exhaust data.

Let the collected car exhaust data set be:

A = {a1, a2, . . . , az} (1)

The initial dataset is decentralised as follows:

a′ =
1

Z

Z∑
r=1

ar (2)

where a′ denotes the mean value of the car exhaust data samples; Z denotes the total
number of data samples; ar denotes the r-th group of car exhaust data samples.

Let the covariance matrix of the vehicle exhaust sample data be 1
Z
AAT , and its corre-

sponding covariance be:

Cov =

∑Z
r=1(ar − a′)(ar − a′)T

Z − 1
(3)

The eigenvalues of the vehicle exhaust data are used to decompose the covariance matrix
to obtain the eigenvalues of the covariance matrix and their corresponding eigenvectors.
The eigenvalues of all the obtained data are arranged in descending order from the largest
to the smallest, and the largest k groups are selected. These k eigenvectors form a matrix
D, which transforms the data into a new dimensional space composed of k eigenvectors.
The preprocessing of the data is completed, which lays a reliable data foundation for the
subsequent calculations.

4. Remote vehicle exhaust gas detection based on integrated deep learning.

4.1. Feature information extraction. This article extracts characteristics from 4G
wireless flow data and studies their statistical variations, such as variance and mean, to
find out how they contribute to categorization. Reducing the resource consumption of the
feature information extraction process and speeding up the classification algorithm work
is achieved by removing any feature that does not contribute to the classification process
from the final feature set. A sliding window is a method of data sampling that involves
placing a window on a portion of the data stream. This window only displays the most
recent data that has arrived in the stream. The sliding window updates the oldest data
with the most recent data as new data comes. In a data stream, a sliding window may be
defined in two ways: first, according to sequence number; and second, according to time.

This article will examine the concept of a time-based sliding window, specifically re-
ferred to as a sliding time window [27]. The sliding time window approach does not
explicitly indicate the quantity of flow packets caught inside the sliding time window, but
rather focuses on the duration of the window itself [28]. Thus, in contrast to the initial
sliding window based on sequence order, the quantity of flow packets collected fluctuates
rather than being constant over the course of the sliding time frame. This variability
accurately reflects the real-time fluctuations in flow.

To further improve the efficiency of feature information extraction by sliding window
and to solve the problem of large memory occupied by the device during traffic process-
ing, this paper adopts an incremental computation-based feature information calculation
method. It is essential to compute several statistics of the flow packets, including variance,
mean, correlation coefficient, and so on, in order to extract feature information. Incremen-
tal computing works on the following principle: The mean and variance of this collection
of samples are shown below, supposing that N packets, denoted as x1, x2, . . . , xN , are
obtained from the network.
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X̄ =
1

N

N∑
i=1

xi (4)

σ2
x =

1

N

N∑
i=1

(xi − X̄)2 (5)

In the event where there exist two sets of sample values, namely the historical value
h1, h2, . . . , hM and the incremental value a1, a2, . . . , aN , it is possible to derive the mean
and variance of both sets by using the definitions of the formulas for variance and mean
that were shown before, such as historical mean H̄, the historical variance σ2

H , the incre-
mental mean Ā, and the incremental variance σ2

A, respectively.

H̄ =
1

M

M∑
i=1

hi (6)

σ2
H =

1

M

M∑
i=1

(hi − X̄)2 (7)

Ā =
1

N

N∑
i=1

ai (8)

σ2
A =

1

N

N∑
i=1

(ai − Ā)2 (9)

Table 3. Feature types and calculation methods

Diagnostic property Notation Calculation method
Quantities n n
Average value µsi

LS
n

Mean square σsi

√
SS
n

− (LS
n
)2

2D mean ∥si, sj∥
√
µ2
si
+ µ2

sj

2D variance Rsi,sj

√
(σ2

si
)2 + (σ2

sj
)2

Covariance Covsi,sj
SRi,j

ni+nj

Correlation coefficient Psi,sj

Covsi,sj
σsiσsj

The next step is to determine the average and standard deviation of the samples,
h1, h2, . . . , hM and a1, a2, . . . , aN [29], and the results are shown in Equation (10) and
Equation (11) respectively. When N = 1, the incremental mean becomes Ā = a1, and
the incremental variance becomes σ2

A = 0, and at this point, Equation (10) and Equation
(11) can be reduced to Equation (12) and Equation (13). So the incremental computation
is characterised by the fact that the current statistics can be computed based on the
historical statistics and the current increment. It may lessen the memory strain and
increase the computational efficiency of low-performance Internet of Things gateways.
The sliding time window size is 500 ms.
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X̄ =
1

M +N

[
M∑
i=1

hi +
N∑
i=1

ai

]
=

MH̄ +NĀ

M +N
(10)

σ2 =
M

[
σ2
H + (X̄ − H̄)2

]
+N

[
σ2
A + (X̄ − Ā)2

]
M +N

(11)

X̄ =
M

M + 1
H̄ +

M

M + 1
a1 (12)

σ2 =
M

M + 1

(
σ2
H + (X̄ − H̄)2

)
+

1

M + 1
(X̄ − a1)

2 (13)

In this paper, we adopt a method based on data incremental computation of feature
information, which can be extracted over a dynamic number of data streams. S, the
mean value µs, the variance σ2

s , the standard deviation σs of S can be calculated by
maintaining a ternary array IS = (N,LS, SS), where N is the number of items in S,
LS is the sum of items in S, and SS is the square sum of items in S. There is no need
to store each item xi in S in memory when data xn is added to S; instead, IS = (N +
1, LS + xn, SS + x2

n) is sufficient. Just IS requires updating whenever fresh information
comes in. The characteristics such as mean square, 2D mean, 2D variance, covariance,
correlation coefficient, etc. can be calculated according to the method in Table 3.

4.2. Emission status detection. After the monitoring centre receives the vehicle’s ex-
haust pollutant data and engine operating condition data, it is necessary to detect its
status in order to find vehicles with abnormal emissions in a timely manner. The petrol
engine control mechanism is a nonlinear time-varying closed-loop system, resulting in a
complex nonlinear relationship between exhaust and operating conditions, which is diffi-
cult to be accurately identified with a linear model. Therefore, in this paper, integrated
deep learning techniques are chosen to achieve the task of detecting abnormal emission
patterns.

4.2.1. AdaBoost algorithm. AdaBoost is an integrated learning algorithm with adaptive
enhancement capabilities that improves on the Boosting algorithm [30, 31]. Based on
the weighting method, AdaBoost combines multiple weak learners with poor training
ability on the same training set to form a strong learner with excellent training ability.
AdaBoost can effectively avoid overfitting, can be used as an algorithmic framework to
optimise other algorithms, and is extremely flexible.

4.2.2. LSTM neural network. LSTM neural network is a modified version of Recurrent
Neural Network (RNN). The gating structure consists of forgetting gates, input gates and
output gates, which control the information taking, inputting, updating and outputting.
Therefore, LSTM neural network has a long time memory function, which can effectively
solve the gradient explosion and gradient vanishing problems generated by RNN during
training, and greatly enhance the accuracy of RNN [32, 33].

The calculation of the oblivion gate is shown below:

ft = σ(Wfh(t−1) + Ufxt + bf ) (14)

The calculation of the infeed gate is shown below:

it = σ(Wih(t−1) + Uixt + bi) (15)

Ct = tanh(Wch(t−1) + Ucxt + bc) (16)
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Ct = C(t−1) ⊙ ft + it ⊙ Ct (17)

The calculation of the output gate is shown below:

ot = σ(Woh(t−1) + Uoxt + bo) (18)

ht = ot ⊙ tanh(Ct) (19)

where ⊙ is the product of matrix elements; Wc is the weight matrix from the unit status
to the input; Wf , Wi and Wo are the weight matrices of slave forgetting, input and output
gates respectively; Uc is the weight matrix from the unit state to the hidden layer; Uf ,
Ui, and Uo are the weight matrices from forgetting, input, and output gates to the hidden
layer respectively; bc is the deviation of the unit state; bf , bi, and bo are the bias vectors
of forgetting, input, and output gates respectively; σ is the sigmoid activation function;
tanh is a hyperbolic tangent activation function.

4.2.3. Improved LSTM based on integrated learning. The improvement method proposed
in this paper enhances the prediction accuracy and robustness of the LSTM neural net-
work method by means of integrated learning. Multiple LSTM weak predictors are serially
trained by AdaBoost integrated learning algorithm, and the samples and weak predictor
weights are continuously adjusted during the training process, and then the weak pre-
dictors are weighted and combined to generate the strong predictors, which output the
final prediction results. Improved LSTM integrates the potential of AdaBoost deep min-
ing algorithm with the advantages of LSTM in dealing with time series problems, solves
the problem of complex selection of parameters of multi-layer LSTM, and improves the
defects of AdaBoost’s sensitivity to outliers.

The construction process of the improved LSTM is as follows:
(1) Assign each sample data the same weight.

Dn =
1

M
, n = 1, 2, . . . ,M (20)

where Dn is the weight of the n-th sample data, and M is the total number of sample
data.

(2) Set the network hyperparameters, and set the total number of LSTM weak predic-
tors to Nn, and train the samples using LSTM neural network.

(3) For the n-th LSTM weak predictor, compute the maximum error of this weak
predictor on the training set as:

En = max |yi −Gn(xi)| (21)

where yi is the weak predictor’s prediction on the training set, and Gn(xi) is the observa-
tion on the training set.

(4) Calculate the relative error for each sample as:

en,j =
(yi −Gn(xi))

2

E2
n

(22)

where en,j is the relative error of the i-th sample data for the n-th weak predictor.
(5) The error rate of the n-th LSTM weak predictor is obtained as:

en =
M∑
i=1

wn,ien,i (23)

where en is the error rate of the n-th predictor, and wn,i is the weight of the i-th sample
data for the n-th weak predictor.
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(6) The weight coefficients of the n-th LSTM weak predictor are obtained as:

αn =
en

1− en
(24)

(7) Weight update for the n+ 1-th weak learner.

wn+1,i =
wn,iα

1−en,i
n

Zn

(25)

where the normalisation factor is:

Zn =
M∑
i=1

wn,iα
1−en,i
n (26)

(8) A median-based combination method is used to fuse multiple weak learners into a
strong learner.

f(x) =
Nn∑
i=1

(
ln

1

αn

)
g(x) (27)

where g(x) is the median of αnGn(x).

5. Experimental results and analyses.

5.1. Experimental setup. In order to check the working performance of the automotive
remote exhaust gas detection system designed in this paper, it needs to be verified by
means of real vehicle testing. A 2022 Audi A4 sedan was chosen as the test vehicle. The
basic parameters of the engine of this vehicle are shown in Table 4.

Table 4. 2022 Audi A4 Sedan Engine Parameters

Parameters Descriptions
Engine type 2.0-litre turbocharged 4-cylinder engine

Maximum output power 201 hp
Maximum torque 236 Nm

Driver type Front front-wheel drive/optional all-wheel drive system
Transmission 7-speed dual-clutch automatic transmission
Fuel type Premium petrol

Combined fuel consumption Approx. 28mpg

Theoretically, with the prolongation of vehicle use time, the engine exhaust pollutant
emission law will change to some extent. However, considering the limitation of the
experimental cost and the validity of the experiment, it is temporarily difficult for this
paper to cover a variety of vehicles with different lengths of use for exhaust gas collection
and analysis. The mileage of the vehicle selected in this paper is 30,000 kilometres, and
its overall performance is in the normal smooth period. The mean square error (MSE)
is used as the loss error during the neural network training, and the Adam optimisation
algorithm is used to train the LSTM method. The learning rate is set to 0.001, the number
of iterations is set to 100, the batch size is set to 32, and the number of predictors is set
to 2. To avoid overfitting of the method, regularisation is used with dropout=0.2, and
the ratio of the training set to the test set is 8:2.
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5.2. Analysis of test results. The whole testing process is trained and recognised on
the engine operating conditions and exhaust emission dataset. The specific parameters of
the dataset are shown in Table 5.

Table 5. Experimental data sets

Engine operating condition Engine exhaust condition Number (groups) Sample size
Normal 40 500

Idle NO exceeded 40 700
CO exceeded 40 500
CO2 exceeded 40 700

Normal 30 500
1000r/min NO exceeded 30 500

CO exceeded 30 500
CO2 exceeded 30 500

Normal 40 700
2000r/min NO exceeded 40 700

CO exceeded 40 700
CO2 exceeded 40 700

Normal 50 600
3000r/min NO exceeded 50 600

CO exceeded 50 600
CO2 exceeded 50 600

Based on the dataset, the tailpipe identification algorithm designed in this paper is
validated according to the 10-fold cross-validation method, and compared with the tradi-
tional Random Forest RF, AdaBoost and LSTM models. The recognition test results are
shown in Figure 4.

I d l e 1 0 0 0 r / m i n 2 0 0 0 r / m i n 3 0 0 0 r / m i n
0

1 0

8 0

9 0

1 0 0

Ac
cur

acy
/%

I n t e g r a t e d i m p r o v e d L S T M R F
A d a B o o s t L S T M

Figure 4. Accuracy of tailpipe condition detection models
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The test results show that the automotive remote exhaust gas detection system designed
in this paper is able to remotely monitor the engine conditions and exhaust gas data in
real time. The system achieves an average accuracy of 91.33% for the abnormal tailpipe
conditions, which is better than the traditional Random Forest RF, AdaBoost and LSTM
models. In addition, it can be found that the integrated and improved LSTM model has
a higher accuracy of exhaust gas identification when the engine is under small or medium
load. Since the time period when the engine is in small and medium load is more during
the actual operation of the vehicle, this system has better practicality.

6. Conclusion. In this work, an improved LSTM model based on AdaBoost integrated
learning is proposed for implementing remote vehicle exhaust gas detection. An in-vehicle
hardware platform based on the TLZ7x-EasyEVM development board was built and 4G
network transmission was performed via FS704UM. The NHA-502 tailpipe analyser is
used as the signal input platform of the vehicle tailpipe platform. A feature information
calculation method based on incremental computation is proposed, which can be used to
extract feature information on a dynamic number of data streams. In order to effectively
improve the problems of low accuracy and insufficient generalisation ability of the dynamic
real-time detection of exhaust gas, an improved LSTM model based on integrated learning
algorithm is proposed. The extracted seven types of feature information are used as inputs
in the exhaust gas monitoring centre, the LSTM neural network is used as the weak
predictor of integrated learning, and the weak predictor is weighted and combined to
obtain the strong predictor using the AdaBoost integrated learning algorithm. Through
experimental validation on Audi A4 vehicles, the results show that the automotive remote
exhaust gas detection system designed in this paper can remotely monitor the engine
operating conditions and exhaust gas data in real time, and its accuracy rate of detecting
abnormal exhaust gas conditions reaches 91.33%.
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