
Journal of Network Intelligence ©2025 ISSN 2414-8105 (Online)
Taiwan Ubiquitous Information Volume 10, Number 1, February 2025

THL: Fast Targeted High Utility Itemset Mining within
Length Consideration

Peiming Xu1, Yixin Jiang1, Xiaoyun Kuang1, Yu Luo2, Jiahui Chen2,∗

1 Guangdong Provincial Key Laboratory of Power System Network Security
CSG, Guangzhou 510000, China.

xupm@csg.cn, jiangyx@csg.cn, kuangxy@csg.cn
2 School of Computer Science and Technology

Guangdong University of Technology, Guangzhou 510006, China
yuluo@gdut.edu.cn, csjhchen@gmail.com
∗Corresponding author: Jiahui Chen

Received August 29, 2024, revised October 30, 2024, accepted December 17, 2024.

Abstract.
High utility itemset mining is a research topic of the pattern mining domain, which has been

widely applied in reality during the past decade. Although most high utility itemset mining algo-
rithms show significant execution performance regarding runtime and memory usage, numerous
results are useless for users. Targeted high utility itemset mining can reduce the number of high
utility itemsets and improve the efficiency of pattern analysis. However, the targeted high utility
itemset mining task aims to find targeted high utility itemsets with as many items as possible.
Users are not that interested in long results in actual scenarios. Therefore, in this article, we
first formulate the problem and then address this issue by proposing a new algorithm named THL
for mining targeted high utility itemset within length constraints, based on utility list structure.
Furthermore, to improve the performance of the novel algorithm, THL adopts several efficiency
pruning strategies, including length and utility aspects. Finally, we conduct an extensive experi-
mental evaluation to compare the SOTA algorithms with THL on several datasets.
Keywords: targeted items, high utility itemset, data mining, length constraint

1. Introduction. With the rapid development of information technology and database man-
agement systems, extracting potential information, patterns, and knowledge from massive data
is an important task in data mining. Data mining technology involves numerous computer sci-
ence principles and techniques, such as applied mathematics, statistics, machine learning, and
database systems. The application of data mining technology can help people to extract hidden
patterns, rules, and associations from numerous data, and help to reveal the valuable informa-
tion behind the data. Data mining technology can help enterprises more accurately understand
market demand, target customer groups and competitors, develop more effective marketing
strategies, and enhance market competitiveness. For example, data mining technology is used
to analyze users ’interests and hobbies, achieve personalized recommendations of goods, fore-
cast sales, and optimize supply chain management to improve users’ shopping experience and
increase sales. Secondly, data mining technology can build predictive models to help predict the
probability of future events’ occurrence, provide effective decision support for decision-makers,
reduce risks, and optimize decision effects. For example, banks and financial institutions can
use data mining technology to detect fraud, assess credit risks, predict stock market trends, and
help risk management and investment decisions. As a research topic in data mining, association
rule mining (ARM) [1] aims to discover the correlation between different frequent itemsets.

541

542 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

ARM algorithm considers the factors, including support and confidence, to find frequent and
high confidence patterns. Among them, based on the setting of the support threshold, the ARM
algorithm can mine frequent itemsets and rare itemsets, so researchers have proposed frequent
pattern mining (FPM) [2] and rare pattern mining (RPM) [3]. FPM can find all itemsets or other
types of subpatterns in the transaction database that occur at least as often as a user-specified
minimum threshold. Contrary to FPM, RPM focuses on finding unusual or rare patterns in the
data, which is important for identifying abnormal events, potential risks, or novel trends. After
more than two decades of research, FPM and RPM have become the aggregated topics and im-
portant research tasks in data mining domain, including frequent itemset mining [4], frequent
sequential pattern mining [5], and rare itemset mining [6], etc.

However, only using frequency to measure user behavior can no longer meet the needs of
today’s e-commerce development. FPM suffers from the unavoidable drawback that it assumes
that all items/itemsets have the same utility value (e.g., profit, weight, or risk). For example, in
daily life, the purchasing behavior of consumers often presents diversified characteristics. Take
supermarket sales as an example. As a daily consumable, the sales of paper towels are usually
far higher than that of high-end wine. However, although the sales of high-end wine are not
high, its unique brewing process, scarce raw materials, and deep cultural heritage make it far
more expensive and profitable than paper towels. In the field of Frequent Pattern mining (FPM),
fine wine may be wrongly perceived as uninteresting to consumers if we analyze items based
on the single factor of purchase frequency. But in fact, high-end wine plays an important role
in improving the brand image of supermarkets, attracting high-end consumers, and increasing
overall profits. Therefore, in the commodity’s analysis, we need to adopt a more comprehensive
and accurate method to evaluate and develop more precise and effective marketing strategies to
maximize profits.

To address the issue of frequent pattern mining, utility pattern mining (UPM) [7] is proposed.
Compared with FPM, UPM considers the problem from a more comprehensive perspective. It
considers both the internal utility (such as sales volume) and external utility (such as unit price)
of an item and obtains high utility itemsets from the transaction database. What’s more, there
is still a shortage in traditional utility pattern mining, which focuses on discovering the combi-
nations of itemsets with actual value and utility to the business but ignores the hidden internal
relationship and interdependence between itemsets. Taking online shopping on e-commerce
platforms as an example, when consumers buy a computer, they often expect the background
system to intelligently recommend highly relevant accessories, such as mice, keyboards, etc.,
rather than simply pushing those products with high utility value but not strong relevance, such
as mobile phones or TVs. Neglecting this internal relationship may lead to the deviation be-
tween the recommendation results and the actual needs of users, and then affect the maximiza-
tion of sales effect. Therefore, how to deeply mine and utilize the internal relationship between
these items to make the recommendation more accurate and more in line with user expectations
has become a key issue to be solved. Recently, Gan et al. [8] proposed a high utility itemset
mining algorithm based on strong association, which aims to mine the premise of high-profit
goods and explore the relationship between goods. Based on utility mining, this mining mode
uses a prior knowledge method named Kulc to detect whether the mined itemsets have high
specific relevance attributes. The strong correlation and high utility itemset mining algorithm
can be effectively applied to different e-commerce platforms. The background system can better
analyze users’ purchasing habits and behaviors, accurately recommend relevant products, opti-
mize business strategies, and effectively improve the competitiveness of e-commerce platforms
and user loyalty.

On the other hand, with the increasing diversification and personalization of consumer needs,
user-centered marketing strategies based on users’ interests and needs have become mainstream.
Taking e-commerce platform sales as an example, when users buy goods, merchants often tend

Fast Targeted High Utility Itemset Mining within Length Consideration 543

to bundle high-profit products, such as technology products, to maximize profits. However,
from the user’s point of view, even if there is a certain internal relationship between technology
products, users are more eager to get recommendations for products with strong goals. For
example, suppose the user needs a computer for a certain time. In that case, the product that
should be recommended to the user must be the computer as the primary product, and the mouse,
headset, etc., are recommended as ancillary products. In the meanwhile, products that are not
directly related to the needs of computers, such as mobile phones and TVs, should be avoided
to ensure the accuracy and effectiveness of the recommendation. Therefore, a goal-oriented
information mining method based on user needs or specific goals is another feasible method.
Recently, Miao et al. [9] applied the goal attribute to the field of high utility itemset mining
for the first time, aiming to mine the combinations of itemsets that satisfy both high utility and
strong goals. At the same time, the concept of goal high utility itemsets mining algorithm is
proposed, and the algorithm realizes the purpose of quickly querying the required goal itemsets
by building the goal decision tree. Target high utility itemset mining can be a good way to meet
the needs of users and increase the sales or profits of merchants. However, in some specific
fields, such as potential credit risk detection, high-end luxury recommendation, abnormal data
detection, etc., unique or abnormal patterns hidden behind the data often contain great value
and insight. Therefore, it is important to consider the rare property in the field of high utility
itemset mining. In the high-end luxury scene, for example, limited edition jewelry, limited
edition art, or special holiday commemorative goods are often favored by certain consumers
and collectors due to their scarcity and uniqueness. Due to infrequent sales, cognitive bias,
or demand dispersion, enterprises tend to pay more attention to commodities and models with
large sales volume and wide audiences, while ignoring those rare and unique commodities may
bring new innovation opportunities and competitive advantages. Therefore, to comprehensively
consider various factors, Zhang et al. [10] proposed a goal-based high utility rare itemset mining
framework. The framework considers three factors simultaneously: goal, rarity, and utility, and
introduces the concept of goal high utility rare itemsets. Target high utility rare itemset mining
can help decision-makers better understand rare patterns and associations in data and support
decision-making, product optimization, and marketing strategy formulation.

To sum up, the existing algorithms for mining high utility itemsets and target high utility
itemsets still have the following problems:

1. Efficiency: how to avoid the problem that the existing algorithms generate numerous ir-
relevant candidates in the mining process.

2. Scalability: the existing algorithms have the problems of slow running efficiency and large
memory consumption.

3. Effectiveness: How to design a more efficient pruning strategy to improve the performance
of the algorithm.

We notice the length factor in the targeted itemset mining task is a good method to tackle
these, and then we propose a new utility list-based targeted itemset mining algorithm consid-
ering length constraints. Especially, we also consider users are usually clear about how many
items they need at least but often have trouble in at most. Therefore, we assume the minimal
length is the number of user-specified targeted items, which reduces the operation complexity of
the algorithm to a certain degree. By these considerations, this work advances research through
the following contributions:

1. We analyze the current situation and existing problems and propose a new utility list-
based targeted itemset mining algorithm named THL, which considers length constraints.
In particular, we construct a new data structure called the co-occurrence structure, which
holds the pruning information and can effectively narrow the search space.

544 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

2. We propose several effective pruning strategies that take into account the length constraints
and users’ understanding of the number of items and give analysis to show that THL can
support significantly improved performance of targeted mining algorithms.

3. We conduct several experiments on significant transaction datasets to assess the perfor-
mance of THL and the state-of-the-art algorithms THUIM and TIRUP in terms of Run-
time, Memory, Candidate generations, and scalability. More precisely, the runtime con-
sumption of THL is up to 40 times faster than that of THUIM, and the memory usage of
THL is up to 4 and 10 times smaller than that of THUIM on the BMSPOS dataset. The
runtime consumption of THL is about 4 times faster than that of TIRUP, while the memory
consumption of TIRUP and variant THL algorithms are similar on the Kosarak dataset.

The remain of this article is structured as follows: Section 2 presents the related work, pro-
viding context and background. Section 3 provides problem definitions and establishes essential
preliminaries. Section 4 provides an in-depth examination of the THL algorithm, outlining its
core structures, strategies, and how they function together. Section 5 is devoted to experiments
and result analysis, where we present compelling evidence for THL’s efficiency and scalabil-
ity. Finally, Section 6 concludes with a recap of the research contributions and outlines future
directions for further extending this work.

2. Related work.

2.1. High utility itemset mining. A utility-based approach is a measure that considers not
only the statistical aspects of the raw data but also the utility of the mined patterns. Since Shen
et al. [11] first introduced the utility concept from the financial domain to the data mining
algorithm, high utility itemset mining is a relatively mature and well-researched topic after
decades. Yao et al. [12] applied the mathematical property of utility constraints to find high
utility itemsets, and then proposed a generic framework for solving utility itemset mining tasks
[13]. However, the biggest issue of their work is wasting so much execution time to filter out
real interesting itemsets, because the utility measure is neither anti-monotonic nor monotonic.
Therefore, a “two-phase” algorithm [14] first designed a significant utility upper-bound, called
transaction-weighted utilization (simplified as TWU). The TWU of an itemset is defined as the
sum of transaction utility such that the transaction contains the itemset, where the transaction
utility is equal to the sum of contained items. If TWU of an itemset is less than a user-defined
minimum utility threshold, the utility values of itemset and its super-itemsets must be less than
the threshold too. Besides, the “two-phase” means the algorithm utilizes a kind of “generation
then test” paradigm. In the first phase, the algorithm adopts TWU upper-bound to filter out
potential high utility itemsets such that utility values are no less than the threshold. Then, in the
second phase, the algorithm recalculates the real utility of these potential high utility itemsets
and outputs a complete set. The algorithm repeats the above steps until there is no new itemset
generated.

Nevertheless, a significant shortcoming of the “two-phase” algorithm is the number of can-
didate generations is huge, which is intolerable for users. Then, more efficient “one-phase”
algorithms were proposed [15, 16, 17, 18, 19, 20, 21, 22]. HUI-Miner [15] is a famous util-
ity list-based mining algorithm. A utility list of an itemset is a set of triples, and each triad
contains necessary utility information about the itemset in a transaction. The algorithm con-
structs a utility list of a high-level itemset according to interactive utility lists of two low-level
itemsets. The advantages of the utility list structure are located in two aspects: 1) only scan-
ning the database twice; and 2) the generalization is better than previous data structures (e.g.,
tree). Nevertheless, these algorithms may face a “combinatorial explosion” of high-level item-
sets since the number of itemsets may be very large, especially since the database is dense.
A pseudo-projection-based approach called EFIM [23] was proposed. With the assistance of

Fast Targeted High Utility Itemset Mining within Length Consideration 545

transaction merging and database projection technologies, EFIM greatly compresses the size
of the database in memory. Furthermore, the EFIM algorithm proposed two efficient utility
upper-bounds named subtree utility and local utility to prune search space. After that, to meet
the requirements of various domains, several EFIM extension algorithms have been proposed,
which allow taking into account constraints and more complex data types [24, 25, 26, 27].

2.2. targeted itemset mining. However, for the itemset mining task, the redundancy issue of
the amount of candidate generations is not fully addressed in the literature. The reason is that
these itemset mining algorithms lack user interaction and demand. To reduce irrelevant item-
sets discovered, the targeted itemset mining task was proposed [28]. The Itemset Tree [29] was
the first data structure designed for discovering targeted itemsets. It converts essential informa-
tion from a transaction database into a tree structure, with leaf nodes representing transaction
records. To identify a complete set of targeted itemsets for a query task, it checks nodes from
the top downward. After that, there are a lot of works of literature studied for improving the
performance of matching targeted itemsets by various modified trees [30, 31, 32]. Recently,
Shabtay et al. [33] modified the classic FP-Growth algorithm for solving multiple querying
issues.

The targeted itemset mining task is likely a searching process. It serves many applications
well because avoiding unnecessary itemset generations. However, the above-mentioned tar-
geted itemset mining algorithms only consider the frequency metric. The frequency of an
itemset is not a sufficient indicator of interestingness because it only reflects the number of
transactions in the database that contain the itemset. In a utility-oriented itemset mining task,
each item has a unit utility (e.g., unit profit) and can appear more than once in each transac-
tion or event (e.g., purchase quantity). TD-FVAUFM [34] is a simple approach that considers
both frequency and utility metrics for addressing prediction tasks on medical databases. Then,
Miao et al. [9] proposed to identify high utility item sets that correspond to the query parame-
ters. It is a tree-based algorithm designed to create a lexicographic tree (referred to as TP-Tree)
for storing all high utility itemsets. Initially, these high utility itemsets are identified by other
high utility itemset mining algorithms. Subsequently, the TP-Tree is built, and the target search
process commences. During the mining process, two threshold constraints on utility are estab-
lished to ensure the retrieval of the desired results. Besides, three effective pruning strategies,
based on the transaction-weighted utilization and the remaining utility of itemsets, respectively,
are estimates that play a significant role in reducing the search space for potential target high
utility itemsets. In addition, to meet the requirements of various domains, several targeted se-
quential pattern mining extensions have been proposed [35, 36, 37, 38], which consider various
constraints and more complex data types.

3. Preliminaries and problem definition. Assuming a finite set I = {x1, x2, . . ., xn} consists of
n distinct items, and an itemset X is a subset of I, where l-itemset contains l different items. For
instance, an item is the 1-itemset. In this paper, we also utilize utility to show users’ interest-
ingness of each item or itemset, whereby the utility of an item (U(xi,T j)) in a transaction T j is
the product of its internal utility (q(xi, T j)) and external utility (p(xi)). In addition, the utility of
an itemset X is the summation of utilities of consisted items, i.e., U(X) =

∑
xi∈X∧T j∈D

U(xi,T j).
Furthermore, as shown in Table 1, a transaction is assigned with a unique ID, call Tid. Then,
a transaction contains finite distinct items and their corresponding internal utilities. A simple
transaction database is composed of several transactions. Besides, in this paper, we assume
external utilities of items a, b, c, d, e, and f are $1, $3, $5, $2, $7, and $9, respectively.

Definition 1 (Transaction-weighted utilization [14]). The utility of a transaction T j is denoted
as U(T j) =

∑
xi∈T j

U(xi) =
∑

xi∈T j
u(xi) × u(xi,T j). Similarly, the transaction-weighted utilization

546 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

Table 1. A simple transaction database

Tid Transaction
T1 (a, 2), (b, 4), (f , 1)
T2 (c, 5), (d, 3), (e, 2)
T3 (b, 1), (d, 4), (e, 4) (f , 1)
T4 (a, 6), (f , 2)
T5 (b, 4), (c, 2), (e, 2)
T6 (a, 3), (b, 2), (c, 2), (d, 6), (e, 2), (f , 1)

of an item is defined as TWU(xi) =
∑

xi∈T j∧T j∈D
U(T j). Given an itemset X, U(X) ≤ TWU(X)

always holds, and thus TWU is a utility upper-bound in search space.

Table 2. The transaction-weighted utilization of items

Item a b c d e f
TWU $101 $161 $183 $147 $183 $149

Definition 2 (High utility itemset). Considering a user-predefined minimum utility threshold
γ (simplified as minUtil), if the utility of an itemset is higher than or equal to minUtil, that is
U(X) ≥ γ, we suppose the itemset is a high utility itemset (abbreviated as HUI).

Definition 3 (Matching). Considering two distinct itemsets X and Y , if X ⊆ Y , then we suppose
Y matches with X or X is matched by Y; otherwise, we assume X and Y mismatch.

Definition 4 (targeted high utility itemset). Assuming a user-specified set of items T = {x1, . . .,
xk}, where 1 ≤ k ≤ n and xk ∈ I, if a HUI X contains all items of T (i.e., T ⊆ X), X is a targeted
high utility itemset (abbreviated as THUI).

Problem statement: Let minUtil, minLength, maxLength, and T be parameters set by user.
The problem of targeted high utility itemset mining with length constraints task is to find a com-
plete set of high utility itemsets matching all targeted items and containing at least minLength
items, and at most maxLength items.

4. The Proposed Algorithm. Since Liu et al. [15] first proposed the utility list structure, the
utility list has been extensively studied in the past decade. It has been well-recognized that the
size of lists is orders of magnitude smaller than the original database. The novel algorithm also
modified the utility list to discover targeted high utility itemsets respecting length constraints.
Herein, we take some introduce as follows:

4.1. Utility list structure.

Definition 5 (The global order). In fact, the targeted high utility itemset mining algorithm can
also be regarded as a depth-first search approach. The search space of the new algorithm is a
targeted set-enumeration tree. Thus, all items are sorted by TWU-ascending order. Besides, if
two itemsets have the same TWU, we take alphabetical order as supplementary. For instance,
considering Table 2, the global order of items is a ≺ d ≺ f ≺ b ≺ c ≺ e.

Definition 6 (Extending items). After sorting items with the global order, given an item xi, the
items after xi are called extending items and defined as E(xi) = {x j | xi ≺ x j ∧ x j ∈ I}.

Fast Targeted High Utility Itemset Mining within Length Consideration 547

Definition 7 (Remaining items). A transaction is called a revised transaction if its elements (i.e.,
items) are sorted by TWU-ascending order. Taking the transaction T1 as an example, the revised
transaction is “(a, 2), (f , 1), (b, 4)”. Furthermore, given an itemset X and a revised transaction
T j with X ⊆ T j, the set of all the items after X in T j is named remaining items and defined as
re(X,T j) = {x j | xi ≺ x j,∀xi ∈ X ∧ x j ∈ T j}. Hence, the sum utility of these remaining items of
X in a revised transaction T j is denoted as reu(X, T j) =

∑
xi∈re(X,T j) U(xi,T j). Furthermore, the

remaining utility of an itemset in the databaseD is denoted as reu(X) =
∑

T j∈D
reu(X, T j).

Definition 8 (Utility list of 1-itemset). In the first database scan, TWU of items are calculated.
Then, during the second database scan, the algorithm constructs utility lists for 1-itemsets. As
shown in Fig. 1, the utility list is composed of several triples, and each tuple contains three
elements <Tid, Iutil, Rutil>. The first element indicates a transaction T j containing the 1-
itemset; the Iutil records the utility of 1-itemset in T j, that is U(xi,T j); the last field Rutil is the
remaining utility of 1-itemset in T j, i.e., reu(X, T j). In conclusion, the utility list structure stores
the key information for pruning X and its super-itemsets. Because the sum of Iutil is the utility
of X in the database, and the sum of Rutil reveals the maximum utility value that super-itemsets
of X can reach.

Tid Iutil Rutil

𝑇2 $25 $14

𝑇5 $10 $14

𝑇6 $10 $14

{ c }

Tid Iutil Rutil

𝑇1 $9 $12

𝑇3 $9 $31

𝑇4 $18 0

𝑇6 $9 $28

{ f }

Tid Iutil Rutil

𝑇2 $14 0

𝑇3 $28 0

𝑇5 $14 0

𝑇6 $14 0

{ e }

Tid Iutil Rutil

𝑇2 $6 $39

𝑇3 $8 $40

𝑇6 $12 $37

{ d }

Tid Iutil Rutil

𝑇1 $4 $21

𝑇4 $6 $18

𝑇6 $3 $49

{ a }

Tid Iutil Rutil

𝑇1 $12 0

𝑇3 $3 $28

𝑇5 $12 $24

𝑇6 $4 $24

{ b }

Figure 1. The utility list of 1-itemsets.

Definition 9 (Utility list of l-itemset). Without scanning the database, the utility list of l-itemset
(l ≥ 2) can be constructed by the intersection of utility lists of two (l − 1)-itemsets, as shown
in Fig. 2. The algorithm identifies the common transactions by comparing the Tids in the two
utility lists and then constructs a new one. It only needs (m + n) comparisons at most if the
lengths of two utility lists are m and n, respectively. Furthermore, considering the common
prefix of two itemsets Px and Py (x ≺ y), the Iutil of the new itemset Pxy has computed the
utility of the prefix {P} twice. Hence, the correct Iutil is denoted as Iutil(Pxy) = Iutil(Px) +
Iutil(Py) - Iutil({P}). In addition, the Rutil of Pxy is equal to Rutil(Py).

4.2. Estimated utility co-occurrence structure. As previous content was introduced, the util-
ity list structure stores vital information about an itemset and reduces the database scanning
times. However, an unavoidable issue is that computing the utility list of an itemset according

548 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

Tid Iutil Rutil

𝑇2 $20 0

𝑇3 $36 0

𝑇6 $26 0

{ d, e }

Tid Iutil Rutil

𝑇5 $22 $14

𝑇6 $14 $14

{ b, c }

Tid Iutil Rutil

𝑇1 $13 $12

𝑇4 $24 0

𝑇6 $12 $28

{ a, f }

Figure 2. The utility list of l-itemsets (l = 2).

to the join operation is very costly. Herein, the new algorithm adopts a new data structure [16]
to prune the low utility of 2-itemsets in the search space.

Definition 10 (EUCS). The estimated utility co-occurrence structure (EUCS) consists of a set
of triples of the form (x, y, z) ∈ I× I×R. The z is indicated as TWU({a, b}) and z , 0. As shown
in Fig. 3, the EUCS can be regarded as a triangular matrix. If the database is more sparse (i.e.,
few items co-occurs with other items), the better pruning effect of EUCS.

item a b c d e f

a 0 $75 $52 $52 $52 $76

b 0 $88 $100 $136 $123

c 0 $97 $133 $52

d 0 $145 $100

e 0 $100

Figure 3. The estimated utility co-occurrence structure.

4.3. Pruning strategies. In this subsection, we first discuss the length parameters and the
size of a set of targeted items. Considering two user-specified thresholds (minLength and
maxLength) and a set of targeted items T , the size of the set of targeted items (|T |) is usu-
ally the minimal number for user expect. It is reasonable to take |T | as minLength because users
always know how many items they want at least. Most of the time, users are unsure how many
items they need at most. For instance, in a retail store, customers will buy a bottle of water if
they are thirsty, but if they are hungry, there is a lot of food to choose from. Therefore, we give
some settings in this paper as follows:

Definition 11 (targeted items constraints). We take the size of the set of targeted items (|T |) as
minLength threshold, and maxLength threshold must be greater than |T |. Besides, if a transac-
tion does not contain all targeted items, there is no need to continue mine.

Fast Targeted High Utility Itemset Mining within Length Consideration 549

Strategy 1. During the first database scanning, if the length of a transaction is less than min-
Length, the algorithm will mark and then remove this transaction; if a transaction does not
contain all targeted items, the algorithm will remove this transaction too.

A naive method for utilizing length constraint is checking the length of the current itemset, if
the number of its contained items is equal to maxLength, then the algorithm does not extend the
itemset in the next iteration. Nonetheless, this method does not consider the utilities of itemsets.
The novel algorithm focuses on mining HUIs that meet conditions. How to effectively reduce
upper-bounds on the utilities of itemsets is vital for pruning the search space. Herein, we adopt
some pruning technologies from the study [17].

Definition 12 (Revised transaction-weighted utilization). Considering the length constraints,
the largest utilities of itemset X in a transaction T j consists of a set of top maxLength largest utili-
ties of items. It is defined as L(X,T j) = {U(x1,T j), . . . ,U(xk,T j)}, where |L(X,T j)| = maxLength
and k ≤ n. Then, the revised transaction-weighted utilization of an itemset X is defined as
RTWU(X) =

∑
X⊆T j∧T⊆X

∑
L(X,T j).

Similarly, within the length constraints, compared to the original TWU, U(X) ≤ RTWU(X)
≤ TWU(X) always holds, where X is an itemset. Thus, we assume all 1-itemsets are sorted by
RTWU-ascending order. Besides, if two itemsets have the same RTWU, we take alphabetical
order as supplementary in this paper. In addition, we suppose a transaction is a revised trans-
action if its items are sorted by the global order in this paper. Then a modified database D′

consists of revised transactions.

Strategy 2. Let X be an itemset, if RTWU(X) is less than the user-defined minimal threshold γ,
X and its super-itemsets cannot be THUIs respecting the maxLength constraint.

After utilizing the revised transcation-weighted utilization pruning strategy, the set of rest
items is renamed I′. Then, the novel algorithm adopts EUCS structure to prune low utility
2-itemsets and all its transitive extensions. Furthermore, to improve the efficiency of EUCS
structure, the new algorithm replaces original z = TWU({x, y}) as z = RTWU({x, y}), and the
size of I′ is far less than I because of targeted items constraints and revised transaction-weighted
utilization pruning strategy.

Strategy 3. Given an EUCS structure, if there is tuple (x, y, z) in EUCS where z < γ, then
itemset xy and all its super-itemsets cannot be THUIs. There is no need to construct a utility list
of xy either.

Definition 13 (Revised remaining utility). In a transaction T j, the maximum number of items
that extend an itemset X is defined as |maxExtend(X,T j)| = maxLength - |X|, where |X| repre-
sents the length of X. Thus, the largest utilities in T j w.r.t a matched itemset X is the set of
top |maxExtend(X,T j)| largest values of remaining items. It is denoted as maxExtend(X,T j) =
{U(x1,T j), . . . ,U(xk,T j)}, where xk ∈ re(X,T j) and k ≤ n. Furthermore, the revised remaining
utility of a matched itemset X in a transaction T j is defined as rreu(X,T j) =

∑
maxExtend(X,T j).

In addition, the revised remaining utility of X in the database D is denoted as rreu(X) =∑
T j∈D

rreu(X,T j).

Similarly, within the length constraints, compared to the original reu, rreu(X,T j) ≤ reu(X,T j)
always holds.

Strategy 4. Given a matched itemset X, if the summation of U(X) and rreu(X) is less than the
user-specified minimal threshold γ, then X and its super-itemsets are not THUIs respecting the
maxLength constraint.

Definition 14 (Revised utility list). The revised utility list of a matched itemset X in the database
D also consists of a set of triples. The difference with the original utility list is that the third

550 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

element (Rutil) is replaced by the set of revised remaining utilities (Rrutil), that is maxExtend(X,
T j). Similarly, the sum of Iutil (Iutil(X)) is the utility of X in the database, and the sum of Rutil
(Rrutil(X)) reveals the maximum utility value that matched super-itemsets of X can reach.

Strategy 5. Considering a matched itemset X, if the summation of Iutil(X) and Rrutil(X) is less
than the user-specified minimal threshold γ, and thus X and its super-itemsets are not THUIs
respecting the maxLength constraint.

As previous content was introduced, the utility list of a new itemset is constructed by two
different utility lists with a common prefix itemset. Let RUL(Px) and RUL(Py) be two different
revised utility lists, their super-itemset Pxy is occurring in transactions such that Px and Py
appear together. Actually, the utility upper-bound (Iutil(X) + Rrutil(X)) is still loose [39].

Strategy 6. Let Px and Py are distinct itemset, and x ≺ y, if
∑

T j∈RUL(Px)(Iutil(Px, T j) + Rrutil(Px,
T j)) -

∑
T j∈RUL(Px)∧Py<T j

(Iutil(Px, T j) + Rrutil(Px, T j)) < γ holds, all extensions of Pxy cannot be
THUIs. There is no need to construct the revised utility list of Pxy.

Algorithm 1: The THL algorithm
Input: D: a transaction database; T : a set of targeted items; γ: a user-specified

minimum utility threshold; maxLength: user expects the maximum number of
items; minLength: user expects the minimum number of items.

Output: THUIs: a complete set of targeted high utility itemsets respecting the length
constraints.

1 set minLength← |T |;
2 for each transaction T j ∈ D do
3 remove transactions such that T j < minLength;
4 remove transactions such that T j mismatch T ;
5 compute RTWU of all 1-itemsets;
6 end
7 set I′ ← 1-itemsets X such that RTWU(X) ≥ γ;
8 Let ≺ be the global order of RTWU-ascending on I′ and T ;
9 setD′ ← as modified database;

10 for each transaction T j ∈ D
′ do

11 RUL(X)← build revised utility lists of all 1-itemsets X ∈ I′;
12 EUCS← build the EUCS structure;
13 end
14 call Miner(∅, RUL(I′), T , γ, minLength, maxLength, EUCS);
15 return THUIs

4.4. The THL algorithm. We introduce the proposed THL algorithm in this subsection. The
Algorithm 1 takes five parameters (D, T , γ, minLength, and maxLength) as input, and finally
output a complete set of targeted high utility itemsets respecting the length constraints. In line 1,
the algorithm first sets the length of targeted items as minLength. Then, during the first database
scanning, the algorithm marks and removes some transactions that do not meet targeted item
constraints (lines 3 and 4). The RTWU of all 1-itemsets are calculated in the meanwhile (line
5). Then, in line 7, those 1-itemsets cannot be high utility itemsets will be pruned in advance.
According to the global order (i.e., RTWU-ascending order), the algorithm resorts 1-itemsets,
targeted items, and transactions (lines 8 and 9). Mining processing of the algorithm is more
efficient after sorting items in the database and targeted items. During the second database
scanning (lines 10–13), the algorithm builds the revised utility lists of 1-itemsets (X ∈ I′)

Fast Targeted High Utility Itemset Mining within Length Consideration 551

and constructs EUCS structure. In line 14, the algorithm utilizes a depth-first approach (cf.
Algorithm 2) to discover a complete set of targeted high utility itemsets respecting the length
constraints.

Algorithm 2: The Miner procedure
Input: P: the common prefix itemset; RUL(P): a set of extensions of P; T : a set of

targeted items; γ: a user-specified minimum utility threshold; maxLength: user
expects the maximum number of items; minLength: user expects the minimum
number of items; EUCS: the EUCS.

Output: THUIs: a complete set of targeted high utility itemsets respecting the length
constraints.

1 for itemset Px ∈ RUL(P) do
2 set currentIndex← the position index of x in T , originalOrder← 0, and

patternOrder← 0;
3 if currentIndex < minLength then
4 originalOrder← the position index of x in I′;
5 patternOrder← the index T [currentIndex] in I′;
6 if originalOrder == patternOrder then
7 currentIndex← currentIndex + 1;
8 end
9 end

10 if currentIndex < minLength and patternOrder < originalOrder then
11 break;
12 end
13 if Iutil(Px) ≥ γ and minLength ≤ |Px| ≤ maxLength then
14 THUIs← Px;
15 end
16 if Iutil(Px) + Rrutil(Px) ≥ γ then
17 RUL(Px)← ∅;
18 for itemset Py ∈ RUL(P) where x ≺ y do
19 if ∃(x, y, z) ∈ EUCS where z ≥ γ then
20 Pxy← Px ∪ Py;
21 if Iutil(Pxy) + Rrutil(Pxy) ≥ γ then
22 RUL(Pxy)← Construct(RUL(P), RUL(Px), RUL(Py));
23 end
24 RUL(Px)← RUL(Px) ∪ RUL(Pxy);
25 end
26 end
27 if |Pxy| < maxLength then
28 Miner(Px, RUL(Px), T , γ, maxLength, minLength);
29 end
30 end
31 end

The Miner procedure (cf. Algorithm 2) is a recursive function and is also the major pro-
cess of the novel algorithm. The procedure takes seven parameters as input in the first iteration
like a common prefix itemset P, a set of extensions of P RUL(P), a set of targeted items T , a
user-specified minimum utility threshold γ, two user-defined length thresholds minLength and

552 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

maxLength, and an estimated utility co-occurrence structure EUCS. Especially, the algorithm
calls the Miner procedure at the first round, the common prefix itemset is null due to the pro-
cessing objects being 1-itemsets. RUL(P) is a set of revised utility lists of 1-itemsets. For each
itemset Px of the revised utility list P, the procedure initializes a series of position indexes of
items. Then it checks item matching during each recursive execution (lines 3–9). The proce-
dure gets the index of matching items (i.e., originalOrder and patternOrder). Then, if a current
item x matches an element of T (line 6), the procedure will continue to check the next item
in Px matches elements of T or not (line 7). Next, if patternOrder is less than originalOrder,
the traversed itemset mismatch with T , and the current recursion will terminate (lines 10–12).
Then, if the summation of Iutil values of RUL(Px) is higher than or equal to γ, and Px respects
the length constraints, Px is a THUI (lines 13–15).

After that, the procedure adopts several efficient utility-pruning strategies to improve the
performance of the proposed algorithm. The procedure calculates the maximum utility value
the current itemset Px can reach. If the maximum utility value is no less than γ, the procedure
will take the next mining step (line 16). Otherwise, Px is not a THUI, and thus the procedure
will check another itemset in RUL(P). In line 17, the procedure initializes an empty revised
utility list of Px. Then, taking another extension itemset Py of P such that x ≺ y (line 18). If
RTWU(xy) is less than γ, xy and its super-itemsets cannot be THUIs (line 19). Then, in line 21,
the procedure checks the maximum utility value of super-itemset of Pxy whether greater than
or equal to γ. If the condition is true, the procedure calls the Construct function (cf. Algorithm
3) to build the revised utility list of Pxy (line 22). Furthermore, if |Pxy| is less than maxLength,
a recursive call to the Miner procedure with Pxy is done to compute its utility and explore its
extensions (lines 27–29).

Algorithm 3: The Construct procedure
Input: RUL(P): the revised utility list of itemset P; RUL(Px): the revised utility list of

itemset Px; RUL(Py): the revised utility list of itemset Py
Output: RUL(Pxy): the revised utility list of itemset Pxy

1 set RUL(Pxy)← ∅;
2 for tuple Ex ∈ RUL(Px) do
3 if ∃Ey ∈ RUL(Py) and Ex.Tid == Ey.Tid then
4 if RUL(P) is not empty then
5 use binary search to find tuple E ∈ RUL(P) such that E.Tid == Ey.Tid;
6 Exy = <Ex.Tid, Iutil(Ex) + Iutil(Ey) - Iutil(E), Rrutil(Ey)>;
7 else
8 Exy = <Ex.Tid, Iutil(Ex) + Iutil(Ey), Rrutil(Ey)>;
9 end

10 add Exy to RUL(Pxy);
11 end
12 end
13 return RUL(Pxy)

The Construct procedure (cf. Algorithm 3) operates as follows. The novel algorithm adopts
an insertion method to reduce the database scan times. The input parameters of the Construct
procedure are revised utility lists of three distinct itemsets, i.e., P, Px, and Py, where P is a
prefix of Px and Py. In line 1, the procedure first builds an empty revised utility list of the
super-itemset Pxy. Then, the procedure traverses each tuple Ex of the revised utility list of Px
(line 2). If the revised utility list of Py exists a tuple Ey has the same Tid with that of Ex, the
procedure then takes the following steps to construct a new tuple of RUL(Pxy). If itemset P is

Fast Targeted High Utility Itemset Mining within Length Consideration 553

not null, the Iutil of the new tuple Exy has to reduce the utility value of prefix itemset because of
double counting (line 6); otherwise, the Iutil of Exy is the sum Iutil values of Ex and Ey (line 8).
Besides, the Rrutil of Exy is the same as that of Ey. However, there is a key step that should be
pointed out. The novel algorithm initiates with 1-itemsets and subsequently expands the search
space through a recursive process, incrementally adding one item at a time to the itemsets. If
the sum of the length of Pxy and its extension (maxExtend(Exy)) is greater than maxLength, the
newly added item should be removed. Finally, the Construct procedure outputs a newly revised
utility list of the super-itemset Pxy.

Table 3. The experimental datasets

Dataset #Trans #Items #Avg Type
BMSPOS 59,601 497 4.8 sparse, short transactions
Foodmart 4,141 1,559 4.4 sparse, short transactions
Accidents 340,183 468 33.8 dense, long transactions
Kosarak 990,000 41,720 8.1 sparse, short transactions

Mushroom 8,124 119 23 dense, long transactions

Table 4. The candidate generation of algorithms on Kosarak

γ 260M 280M 300M 320M 340M 360M 380M 400M
THUIM 1,338,461 688,514 406,774 237,142 137,778 47,539 15,737 9,567
TIRUP 1,208 955 724 527 324 162 100 79
THL3 57 50 44 41 32 30 27 26
THL5 312 240 198 179 150 135 118 98
THL f ull 669 539 429 323 257 219 198 177

5. Experimental Study. We conduct several experiments on five significant transaction datasets
to assess the performance of THL. All experiments were performed on a computer with 64-bit
Core i5 processor 2.5 GHz running Windows 10 and 32 GB RAM. Considering there is no
targeted high utility itemset mining algorithm respecting length constraints yet, we choose two
state-of-the-art algorithms (THUIM [40] and TIRUP [27]) as experimental benchmarks. In par-
ticular, the TIRUP algorithm also adopts the utility list-based structure to discover a complete
set of targeted high utility itemsets respecting support constraints. Therefore, we removed sup-
port constraints and modified TIRUP mines THUIs in the same as THUIM does. This paper
uses symbols “K” and “M” to replace thousands and millions. Besides, this paper assumes the
minimum length as the number of targeted items. We thus use a numeric subscript of the novel
algorithm to represent the maximum length setting. For instance, THL10 means maxLength is
10 on experiment. Furthermore, to test the performance of the new algorithm without length
constraints, we assume the THL f ull algorithm discovers the number of THUIs as much as that of
THUIM and TIRUP. All experimental algorithms were implemented in Java language, and run-
time and memory measurements were done using the Java API. If an experiment executes over
36,000 seconds, we suppose the algorithm is terminated and cannot discover the right results.

5.1. Experimental datasets. The experimental datasets can be freely downloaded from the
SPMF1 open-source data mining library. As shown in Table 3, #Trans shows how many trans-
actions the dataset has, #Items reveals the number of distinct items, #Avg represents the aver-
age length of a transaction of the dataset, and Type describes some features of datasets. The

1https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

554 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

BMSPOS dataset contains clickstream data from an e-commerce. The Foodmart dataset of cus-
tomer transactions from a retail store was obtained and transformed from SQL-Server 2000.
The Accidents dataset is anonymized traffic accident data. Kosarak consists of transactions
from click-stream data from a Hungarian news portal. The Mushroom dataset includes descrip-
tions of hypothetical samples corresponding to 23 species of gilled mushrooms. Four datasets
(BMSPOS, Foodmart, Accidents, and Kosarak) were used to evaluate the execution efficiency
of tested algorithms, and Mushroom was used to experiment scalability of the THL algorithm.

150K 200K 250K 300K 350K 400K 450K 500K
0

10

20

30

40

50

60

70

80

90

R
un

tim
e

(s
)

(a) BMSPOS

THUIM
TIRUP
THL

6

THL
10

THL
full

6K 8K 10K 12K 14K 16K 18K 20K
0

0.5

1

1.5

2

2.5

R
un

tim
e

(s
)

(b) Foodmart

THUIM
TIRUP
THL

6

THL
10

THL
full

40M 42M 48M 50M 52M 54M
0

500

1000

1500

2000

R
un

tim
e

(s
)

(c) Accidents

THUIM
TIRUP
THL

10

THL
17

THL
full

26M 28M 30M 32M 34M 36M 38M 40M
0

10

20

30

40

50

60

70

80

90
R

un
tim

e
(s

)
(d) Kosarak

THUIM
TIRUP
THL

3

THL
5

THL
full

Figure 4. The runtime consumption of experimental algorithms on four datasets.

150K 200K 250K 300K 350K 400K 450K 500K
0

100

200

300

400

500

M
em

or
y

(M
B

)

(a) BMSPOS

THUIM TIRUP THL
6

THL
10

THL
full

6K 8K 10K 12K 14K 16K 18K 20K
0

50

100

150

200

250

300

350

M
em

or
y

(M
B

)

(b) Foodmart

THUIM TIRUP THL
6

THL
10

THL
full

40M 42M 48M 50M 52M 54M
500

1000

1500

2000

2500

3000

3500

M
em

or
y

(M
B

)

(c) Accidents

THUIM TIRUP THL
10

THL
17

THL
full

26M 28M 30M 32M 34M 36M 38M 40M
400

500

600

700

800

900

1000

M
em

or
y

(M
B

)

(d) Kosarak

THUIM TIRUP THL
3

THL
5

THL
full

Figure 5. The memory usage of tested algorithms on four datasets.

5.2. Efficiency analysis. It can be first observed that maxLength can effectively speed up the
mining process in Fig. 4. The runtime consumption continuously declines while the minimal
utility threshold γ increases. The THUIM algorithm performs the worst on most experimen-
tal datasets. On the BMSPOS dataset, the runtime consumption of THUIM is up to 40 times

Fast Targeted High Utility Itemset Mining within Length Consideration 555

greater than that of TIRUP and THL when γ = 500K. On the Kosarak dataset, the runtime con-
sumption of Kosarak is up to 2-4 times greater than that of THL when γ = 500K. Compared
to other variant THL algorithms, the THL f ull algorithm still performs well except on the Acci-
dents dataset. The runtime consumption of tested THL algorithms gradually decreases while
maxLength reduces. With the same γ setting as displayed in Fig. 4, the memory usage of tested
algorithms is shown in Fig. 5. It can be noticed that the memory consumption of THUIM is
also much greater in most cases. For example, considering γ = 500K on the BMSPOS dataset,
the memory usage of THUIM is up to 4 and 10 times greater than that of TIRUP and THL6,
respectively. The memory consumption of TIRUP and variant THL algorithms are similar on
Foodmart in most cases. Then, the memory cost of THL and TIRUP steadily decreases as the
minimal utility threshold increases on Kosarak.

5.3. Candidate generations comparison. Table 4 indicates the number of candidate gener-
ations of experimental algorithms. The number of candidates continuously decreases as the
minimal utility threshold increases. Due to the poor performance of THUIM, the account of
candidates of THUIM is far greater than that of other algorithms. For instance, when γ is
260M, the quantity of generated candidates of THUIM is up to 3 and 5 orders of magnitude
higher than that of TIRUP and THL respectively. While γ becomes smaller, the gap of gener-
ated candidates between THL (e.g., THL5) and TIRUP becomes larger. Compared to variants
of THL, the value of maxLength has a great impact on the number of candidate generations.
For example, when γ is equal to 400M, the candidate quantity of THL f ull is nearly twice that
of THL5, but the accounts of THUIs they output are equal (Fig. 6). We also present the THUIs
discovered of tested algorithms on four datasets in Fig. 6. The generated quantities of THUIM,
TIRUP, and THL f ull are always equal. Then, it is clear that the less maxLength is, the fewer final
results discovered. On Accidents dataset, the THUIs of THL10 are less than 300 w.r.t various
utility thresholds, and thus it is hard to be seen in the figure.

(a) BMSPOS

150K 200K 250K 300K 350K 400K 450K 500K
0

0.5

1

1.5

2

2.5

C
ou

nt

104

THUIM
TIRUP
THL

6

THL
10

THL
full

(b) Foodmart

6K 8K 10K 12K 14K 16K 18K 20K
0

100

200

300

400

500

C
ou

nt

THUIM
TIRUP
THL

6

THL
10

THL
full

(c) Accidents

40M 42M 48M 50M 52M 54M
0

5

10

15

C
ou

nt

104

THUIM
TIRUP
THL

10

THL
17

THL
full

(d) Kosarak

26M 28M 30M 32M 34M 36M 38M 40M
0

10

20

30

40

C
ou

nt

THUIM
TIRUP
THL

3

THL
5

THL
full

Figure 6. The THUI generations of algorithms on four datasets.

5.4. Scalability test. This paper takes Mushroom as an experimental dataset to evaluate the
scalability of THL w.r.t length constraints. In Fig. 7, we take 1000, 3000, 5000, 7000, and
8000 transactions from Mushroom. The targeted items are {34, 37, 38} and γ = 24K. Scalability

556 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

experiments are carried out to evaluate four aspects: runtime and memory consumption, candi-
date, and THUI generations. The runtime usage increases linearly as the data size increases (as
shown in Fig. 7(a)). The value of maxLength certainly influences the performance of THL. For
instance, the memory consumption of THL9 is around 5 times less than that of THL f ull while
the data size is 8K. In summary, THL is quite an efficient algorithm, which can quickly and ef-
fectively discover a complete set of targeted high utility itemsets respecting length constraints.

1K 3K 5K 7K 8K
Data Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
un

tim
e

(s
)

(a) Runtime

THL
9

THL
11

THL
13

THL
15

THL
17

THL
full

1K 3K 5K 7K 8K
Data Size

0

50

100

150

200

250

M
em

or
y

(M
B

)

(b) Memory

THL
9

THL
11

THL
13

THL
15

THL
17

THL
full

1K 3K 5K 7K 8K
Data Size

0

0.5

1

1.5

2

2.5

C
ou

nt

104 (c) Candidates

THL
9

THL
11

THL
13

THL
15

THL
17

THL
full

1K 3K 5K 7K 8K
Data Size

0

500

1000

1500

2000

2500

3000

3500

4000

C
ou

nt

(d) THUIs

THL
9

THL
11

THL
13

THL
15

THL
17

THL
full

Figure 7. The scalability test of the THL algorithm w.r.t different maxLengths.

6. Conclusion. In this paper, we notice current works of literature ignore the length factor
in the targeted itemset mining task, and then propose a new utility list-based targeted itemset
mining algorithm respecting length constraints. Especially, we also consider users are usually
clear about how many items they need at least but often have trouble in at most. Therefore, we
assume the minimal length is the number of user-specified targeted items, which reduces the
operation complexity of the algorithm to a certain degree. In the future, we try to optimize the
matching mechanism and applied in other domains, such as user sequences behavior analysis,
privacy protection, targeted recommendation system, and intelligent search.

Acknowledgment. This research was supported by the Guangdong Provincial Key Laboratory
of Power System Network Security (No.GPKLPSNS-2022-KF-04).

REFERENCES

[1] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in Proceedings of the 20th
International Conference Very Large Data Bases, vol. 1215. Santiago, 1994, pp. 487–499.

[2] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le, “A survey of itemset mining,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 4, p. e1207, 2017.

[3] Y. S. Koh and S. D. Ravana, “Unsupervised rare pattern mining: a survey,” ACM Transactions on Knowledge
Discovery from Data, vol. 10, no. 4, pp. 1–29, 2016.

[4] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining using fp-trees,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 10, pp. 1347–1362, 2005.

[5] J. Wang, J. Han, and C. Li, “Frequent closed sequence mining without candidate maintenance,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1042–1056, 2007.

[6] M. Adda, L. Wu, and Y. Feng, “Rare itemset mining,” in Proceedings of the 6th International Conference on
Machine Learning and Applications. IEEE, 2007, pp. 73–80.

Fast Targeted High Utility Itemset Mining within Length Consideration 557

[7] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V. S. Tseng, and P. S. Yu, “A survey of utility-oriented
pattern mining,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp. 1306–1327,
2019.

[8] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and H. Fujita, “Extracting non-redundant correlated
purchase behaviors by utility measure,” Knowledge-Based Systems, vol. 143, pp. 30–41, 2018.

[9] J. Miao, S. Wan, W. Gan, J. Sun, and J. Chen, “Targeted high-utility itemset querying,” IEEE Transactions
on Artificial Intelligence, vol. 4, no. 4, pp. 871–883, 2022.

[10] P. Zhang, J. Chen, S. Wan, and W. Gan, “Targeted mining of rare high-utility patterns,” in IEEE International
Conference on Big Data. IEEE, 2022, pp. 6271–6280.

[11] Y.-D. Shen, Z. Zhang, and Q. Yang, “Objective-oriented utility-based association mining,” in Proceedings of
the IEEE International Conference on Data Mining. IEEE, 2002, pp. 426–433.

[12] H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach to mining itemset utilities from databases,”
in Proceedings of the SIAM International Conference on Data Mining. SIAM, 2004, pp. 482–486.

[13] H. Yao, H. J. Hamilton, and L. Geng, “A unified framework for utility-based measures for mining itemsets,”
in Proceedings of the ACM SIGKDD 2nd Workshop on Utility-Based Data Mining. Citeseer, 2006, pp.
28–37.

[14] Y. Liu, W.-k. Liao, and A. Choudhary, “A fast high utility itemsets mining algorithm,” in Proceedings of the
1st international workshop on Utility-based data mining, 2005, pp. 90–99.

[15] M. Liu and J. Qu, “Mining high utility itemsets without candidate generation,” in Proceedings of the 21st
ACM International Conference on Information and Knowledge Management, 2012, pp. 55–64.

[16] P. Fournier-Viger, C.-W. Wu, S. Zida, and V. S. Tseng, “FHM: Faster high-utility itemset mining using esti-
mated utility co-occurrence pruning,” in Foundations of Intelligent Systems: 21st International Symposium.
Springer, 2014, pp. 83–92.

[17] P. Fournier-Viger, J. C.-W. Lin, Q.-H. Duong, and T.-L. Dam, “FHM+: Faster high-utility itemset mining
using length upper-bound reduction,” in International Conference on Industrial, Engineering and Other Ap-
plications of Applied Intelligent Systems. Springer, 2016, pp. 115–127.

[18] S. Wan, W. Gan, X. Guo, J. Chen, and U. Yun, “FUIM: Fuzzy utility itemset mining,” arXiv preprint
arXiv:2111.00307, 2021.

[19] P. Wu, X. Niu, P. Fournier-Viger, C. Huang, and B. Wang, “UBP-Miner: An efficient bit based high utility
itemset mining algorithm,” Knowledge-Based Systems, p. 108865, 2022.

[20] S. Wan, J. Chen, Z. Qi, W. Gan, and L. Tang, “Fast RFM model for customer segmentation,” in Companion
Proceedings of the Web Conference, 2022, pp. 965–972.

[21] S. Wan, Z. Ye, W. Gan, and J. Chen, “Temporal fuzzy utility maximization with remaining measure,” arXiv
preprint arXiv:2208.12439, 2022.

[22] Z. Cheng, W. Fang, W. Shen, J. C.-W. Lin, and B. Yuan, “An efficient utility-list based high-utility itemset
mining algorithm,” Applied Intelligence, vol. 53, no. 6, pp. 6992–7006, 2023.

[23] S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng, “EFIM: a fast and memory efficient
algorithm for high-utility itemset mining,” Knowledge and Information Systems, vol. 51, no. 2, pp. 595–625,
2017.

[24] J. M.-T. Wu, J. C.-W. Lin, and A. Tamrakar, “High-utility itemset mining with effective pruning strategies,”
ACM Transactions on Knowledge Discovery from Data, vol. 13, no. 6, pp. 1–22, 2019.

[25] S. Wan, J. Chen, P. Zhang, W. Gan, and T. Gu, “Discovering top-k profitable patterns for smart manufactur-
ing,” in Companion Proceedings of the Web Conference, 2022, pp. 956–964.

[26] S. Wan, J. Deng, W. Gan, J. Chen, and P. S. Yu, “Fast mining RFM patterns for behavioral analytics,” in IEEE
9th International Conference on Data Science and Advanced Analytics. IEEE, 2022, pp. 1–10.

[27] Y. Xu, C. Peng, J. Chen, W. Gan, and S. Wan, “Mining rare utility patterns within target items,” in Proceedings
of the IEEE International Conference on Big Data. IEEE, 2023, pp. 6015–6024.

[28] G. Huang, W. Gan, and P. S. Yu, “TaSPM: Targeted sequential pattern mining,” ACM Transactions on Knowl-
edge Discovery from Data, vol. 18, no. 5, pp. 1–18, 2024.

[29] M. Kubat, A. Hafez, V. V. Raghavan, J. R. Lekkala, and W. K. Chen, “Itemset trees for targeted association
querying,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 6, pp. 1522–1534, 2003.

[30] Y. Li and M. Kubat, “Searching for high-support itemsets in itemset trees,” Intelligent Data Analysis, vol. 10,
no. 2, pp. 105–120, 2006.

[31] J. Lavergne, R. Benton, and V. V. Raghavan, “Min-max itemset trees for dense and categorical datasets,” in
Foundations of Intelligent Systems: 20th International Symposium. Springer, 2012, pp. 51–60.

[32] J. Lewis, R. G. Benton, D. Bourrie, and J. Lavergne, “Enhancing itemset tree rules and performance,” in
Proceedings of the 7th IEEE International Conference on Big Data. IEEE, 2019, pp. 1143–1150.

558 P. Xu, Y. Jiang, X. Kuang, Y. Luo and J. Chen

[33] L. Shabtay, P. Fournier-Viger, R. Yaari, and I. Dattner, “A guided FP-Growth algorithm for mining multitude-
targeted item-sets and class association rules in imbalanced data,” Information Sciences, vol. 553, pp. 353–
375, 2021.

[34] G. Arumugam and V. Vijayakumar, “Design of query-driven system for time-utility based data mining on
medical data,” in Proceedings of the 10th Knowledge Management in Organizations: 10th International
Conference. Springer, 2015, pp. 664–682.

[35] C. Zhang, Q. Dai, Z. Du, W. Gan, J. Weng, and S. Yu, Philip, “TUSQ: Targeted high-utility sequence query-
ing,” IEEE Transactions on Big Data, vol. 9, no. 2, pp. 512–527, 2022.

[36] W. Gan, G. Huang, J. Weng, T. Gu, and P. S. Yu, “Towards target sequential rules,” arXiv preprint
arXiv:2206.04728, 2022.

[37] K. Hu, W. Gan, S. Huang, H. Peng, and P. Fournier-Viger, “Targeted mining of contiguous sequential pat-
terns,” Information Sciences, vol. 653, p. 119791, 2024.

[38] J. Zhu, X. Chen, W. Gan, Z. Chen, and S. Yu, Philip, “Targeted mining precise-positioning episode rules,”
IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–14, 2024.

[39] S. Krishnamoorthy, “Pruning strategies for mining high utility itemsets,” Expert Systems with Applications,
vol. 42, no. 5, pp. 2371–2381, 2015.

[40] J. Miao, S. Wan, W. Gan, J. Sun, and J. Chen, “Targeted high-utility itemset querying,” IEEE Transactions
on Artificial Intelligence, vol. 4, no. 4, pp. 871–883, 2022.

	1. Introduction
	2. Related work
	2.1. High utility itemset mining
	2.2. targeted itemset mining

	3. Preliminaries and problem definition
	4. The Proposed Algorithm
	4.1. Utility list structure
	4.2. Estimated utility co-occurrence structure
	4.3. Pruning strategies
	4.4. The THL algorithm

	5. Experimental Study
	5.1. Experimental datasets
	5.2. Efficiency analysis
	5.3. Candidate generations comparison
	5.4. Scalability test

	6. Conclusion
	Acknowledgment
	REFERENCES

