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Abstract. Traditional autonomous navigation methods for mobile robots mainly rely on
geometric feature-based LiDAR scan-matching algorithms, but in complex environments,
this method is often affected due to the presence of moving objects, occlusions, and other
interfering factors, resulting in a decrease in positioning accuracy. With the growing
demand for robotics applications in logistics, security, exploration and other fields, the
need for robust autonomous navigation and high-precision mapping in highly dynamic
and complex environments is becoming more and more urgent. To solve this problem, an
improved front-end scan matching algorithm based on Frequency Modulated Continuous
Wave (FMCW) LiDAR is proposed in this paper. Firstly, by using the target Doppler
velocity information provided by the FMCW LiDAR, we design a novel point cloud seg-
mentation algorithm based on velocity clustering, which is able to effectively distinguish
between stationary and moving objects, and avoid the dynamic interference affecting the
position estimation. Secondly, we introduce the Gaussian Mixture Model Sampling Con-
sistency (GMMSC) algorithm, which is more robust to reject the mis-matched pairs in
the scanning matching process and improve the alignment accuracy. Finally, based on
the residual high-quality matched pairs, we combine the classical ICP algorithm with the
robust kernel function to further enhance the stability of the position estimation in the
case of occlusion and local mismatch. The experimental results show that the proposed
improved algorithm significantly improves the mapping capability of mobile robots in com-
plex environments compared with the existing techniques. The average relative error of
the improved front-end scanning matching algorithm is reduced by 40.6 % compared with
the pre-improved one.
Keywords: Mobile robot; FMCW LiDAR; Scan matching; Point cloud segmentation;
False match rejection

1. Introduction. With the continuous development of artificial intelligence, sensors and
robotics, mobile robots have gradually come out of the laboratory and have been widely
used in more and more fields. In logistics and distribution [1, 2, 3], mobile robots can
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autonomously complete the handling and sorting of goods in warehouses, terminals and
other scenarios with high efficiency, which greatly improves the operational efficiency. In
the field of security [4, 5], unmanned robots can replace manual patrolling and monitoring,
providing 7 Ö 24-hour uninterrupted coverage to safeguard public places. In exploration
[6, 7], a variety of specialised mobile robots can enter narrow, treacherous or high-risk
environments that are difficult for personnel to reach to perform exploration and sampling
tasks. In addition, home service robots [8], assistive robots [9] and other fields also have a
broad application prospect. The popularity of mobile robots will not only improve work
efficiency and safety, but also promote the overall improvement of the productivity of the
whole society.

Autonomous navigation and map building capability of mobile robots is one of the key
technologies to achieve unmanned operation [10], which has a wide range of demands
in various application areas, such as logistics and distribution, security patrol, and ex-
ploration operations. In order to achieve high-precision autonomous localisation and
mapping, mobile robots need to fuse a variety of sensor information, of which LiDAR
scanning matching is one of the most commonly used and effective methods [11]. Tradi-
tional LiDAR scanning matching algorithms mainly rely on the geometric features of the
point cloud for alignment, but in complex environments, due to the presence of interfer-
ence factors such as occlusion and moving objects, this geometric feature-based method
is often affected, resulting in a decrease in positioning accuracy.

In addition, compared to the traditional pulsed LiDAR, Frequency Modulated Contin-
uous Wave (FMCW) LiDAR can not only accurately measure the target distance, but
also obtain the target radial velocity information through Doppler frequency shift [12].
This unique velocity measurement capability gives FMCW LiDAR a natural advantage
in detecting and tracking moving targets, which helps to improve the perception and
map building accuracy of mobile robots in dynamic and complex environments. At the
same time, FMCW technology can provide higher ranging resolution and anti-interference
ability, which makes the performance of LiDAR better in narrow space and occluded en-
vironment [13]. Therefore, fully exploiting the characteristics of FMCW LiDAR will be
expected to promote the new development of autonomous navigation technology for mo-
bile robots. The main research objective of this paper is to propose an improved front-end
scan matching algorithm based on FMCW LiDAR to enhance the autonomous localisation
and map building capabilities of mobile robots in dynamic and complex environments.
Through the improvement measures, we expect to significantly enhance the autonomous
navigation performance of mobile robots in complex environments, and lay a solid tech-
nical foundation for their applications in logistics, security, exploration and other fields.

1.1. Related work. For the problem of autonomous localisation and map building of
mobile robots in complex environments, researchers have proposed a variety of improved
algorithms, such as introducing machine learning techniques to improve the robustness of
data correlation, optimising the position estimation using semantic a priori constraints,
and fusing the Doppler velocity information from the FMCW LiDAR to detect the moving
objects.

Kostavelis and Gasteratos [14] proposed a 3D LiDAR-based semantic KITTI dataset
for evaluating object recognition and motion estimation performance of mobile robots
in complex environments. The dataset contains rich scene annotations and provides a
good benchmark for algorithm evaluation. However, the scenes in this dataset are still
limited to outdoor environments such as streets and car parks, and may not be com-
prehensive enough for more complex indoor dynamic scenes. Wang et al. [15] designed
a novel machine learning-based LiDAR motion compensation algorithm to correct point
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cloud aberrations by predicting robot motion during scanning. The method significantly
improves the accuracy of LiDAR image construction under high-speed motion. However,
this algorithm requires high training data, and the generalisation performance may suffer
in the absence of sufficient motion data. Park et al. [16] proposed a LiDAR scan matching
algorithm based on Bayesian thinking, which improves the robustness of the alignment
process by taking into account the non-Gaussian characteristics of the measurement noise.
The results show that this algorithm improves the positioning accuracy in the presence
of partial occlusion and moving objects. Wong et al. [17] proposed an adaptive Iterative
Closest Point (ICP) improvement method based on enhancement learning to address the
poor matching effect of the traditional ICP algorithm in smooth regions and unstructured
environments. Through the reward mechanism, this algorithm can automatically adjust
the data association weights, which effectively improves the matching accuracy in the
region with inconspicuous local features. However, this algorithm requires a large amount
of training data and computational resources, and is difficult to deploy and migrate. Su et
al. [18] proposed a dynamic object detection and removal algorithm based on deep learn-
ing for the problem of SLAM system’s localisation offset in complex environments with
dynamic objects. Using recurrent neural networks to process the point cloud sequence,
the interference of dynamic objects on the position estimation can be effectively removed.
However, this algorithm needs to process each pair of point cloud frames in sequence,
which is computationally inefficient and may be a bottleneck in scenes with high real-
time requirements. Jin et al. [19] designed a dynamic point cloud segmentation method
using the velocity information provided by FMCW LiDAR. By effectively separating the
static background and moving objects, the accuracy of LiDAR odometry and map build-
ing is substantially improved. However, the segmentation effect of this algorithm may
be affected for targets moving at low or uniform speeds. Renaut et al. [20] proposed a
LiDAR position estimation algorithm based on Normal Distribution Transform (NDT).
This algorithm suppresses the effects of occlusion and moving objects by introducing
Gaussian kernel weights, which improves the robustness of LiDAR scan matching in the
environment. However, this algorithm relies on accurate motion and noise models and is
more sensitive to changes in model assumptions.

1.2. Motivation and contribution. Although the above methods have improved the
perception and mapping ability of mobile robots to a certain extent, there are still some
deficiencies in real-time, computational efficiency and model generalisation, which are dif-
ficult to fully meet the demands of highly dynamic and complex practical application sce-
narios. Aiming at the shortcomings of the existing techniques, an improved scan-matching
algorithm that integrates FMCW LiDAR Doppler velocity measurements, Gaussian mix-
ture model mis-matching rejection and robust ICP-based position estimation is proposed,
aiming to further enhance the autonomous navigation and mapping capabilities of mobile
robots in dynamic and complex environments. The main innovations and contributions
of this work include:

(1) By utilising the target radial velocity information measured by FMCW LiDAR, we
propose a novel velocity clustering-based point cloud segmentation algorithm, which is
able to effectively differentiate between stationary and moving objects, thus avoiding the
influence of dynamic interference on the position estimation and map construction.

(2) To address the problem of mis-matching in the scanning matching process, we
introduce the Gaussian Mixture Model Sampling Consistency (GMMSC) algorithm, which
eliminates the mis-matched pairs in a more robust way by fitting Gaussian mixture models
to the matching residuals, thus improving the quality of alignment and the accuracy of
the position estimation.
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(3) On the basis of the above point cloud segmentation and mis-match rejection, we
apply the classical ICP algorithm to the residual high-quality matched point pairs, and in-
troduce a robust kernel function to further improve the stability of the position estimation
in the presence of occlusion and local mismatch.

Some existing algorithms introduce complex models or deep learning techniques to im-
prove accuracy, but this leads to a significant increase in the computational complexity of
this algorithm, which makes it difficult to meet the real-time requirements. The improved
scanning matching algorithm proposed in this paper maintains good computational effi-
ciency while improving accuracy, and is suitable for deployment on resource-constrained
mobile platforms. Some algorithms are built on scene-specific assumptions with poor
generalisation ability. The method in this paper is mainly based on the geometric and
motion features of the point cloud, with fewer a priori assumptions on the scene, which
can be better generalised to a wider range of complex environments.

2. Analysis of relevant principles.

2.1. FMCW LIDAR measurement principle. FMCW LIDAR, as an advanced sen-
sor, has attracted a lot of attention because of its ability to provide both distance and
speed information. The FMCW LIDAR measurement principle uses a laser transmitter
to emit a FMCW, and determines the distance between the target object and the radar
by using the difference in the frequency of the laser signals reflected back from the target
object. distance from the radar. When the laser beam is emitted, the frequency changes
continuously with time, and the frequency of the signal reflected back from the target also
changes with time. By measuring the difference of the frequency change, the distance be-
tween the radar and the target can be calculated, so as to realise range measurement.
Simply put, FMCW is based on transmitting a continuously modulated laser signal and
receiving the reflected signal back, and obtaining the distance and speed information of
the target by calculating the frequency difference between the transmitted signal and the
returned signal (i.e. beat frequency signal).

LIDAR emits a continuous wave signal with a time-dependent frequency, usually in a
triangular or sawtooth wave FM mode.

ft(t) = f0 + k(t) (1)

where f0 is the initial frequency and k(t) is the frequency modulation term over time.
The transmitted signal encounters the target object and is reflected back. The receiver

collects the reflected signal and mixes it locally with the transmitted signal to produce a
beat signal. Let the frequency of the transmitted signal be ft(t), then the frequency of
the received signal be fr(t) and the frequency of the beat signal be fd = |ft(t)− fr(t)|.

fr(t) = f0 + k(t− τ) (2)

where τ is the propagation delay of the signal to and from the target.
The distance and speed information of the target can be obtained by calculating the

frequency of the beat signal. The distance can be determined by calculating the phase
difference of the beat frequency signal.

d =
c · τ
2 · f0

(3)

where c is the speed of light and d is the distance of the LiDAR from the target.
Velocity information can be obtained through the Doppler shift. When the target object

has a velocity v with respect to the LIDAR, a Doppler shift ∆fd is generated, which is
related to the velocity as ∆fd =

2v
λ
, where λ is the wavelength of the laser.
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v =
λ ·∆fd

2
(4)

2.2. Principle of Laser SLAM Algorithm. Laser SLAM (Simultaneous Localisation
and Mapping) algorithm obtains the map information of the environment through LIDAR
sensor and locates the robot’s position in real time based on it, so as to achieve the
tasks of simultaneous localization and map building [21, 22]. The principle is that the
robot scans the surrounding environment through the carried LiDAR, and builds a map
based on the distance data and angle information acquired by the LiDAR; meanwhile,
the robot estimates its position in real time based on its own motion information and
the feature point information acquired by the LiDAR. The laser SLAM algorithm mainly
includes front-end data processing (e.g. feature extraction, scan matching), back-end data
processing (attitude estimation, optimisation), as well as alignment, closed-loop detection
and other modules, and through the collaborative work of these modules, it achieves the
robot’s autonomous localisation and map construction in an unknown environment.

Scan matching at the front end is the main method for localisation of the robot. Com-
pared with the method of using odometers and IMUs to calculate the position, the scan-
ning matching method has a higher accuracy. The basic idea of scanning matching is
to align the target frame with the reference frame, and the rotations and translations
required in the alignment process are the relative positions between the two frames. The
position of the reference frame is known and the position of the target frame can be ob-
tained from the relative position [23]. In the local localisation of SLAM systems, IMUs
or odometers are often used first to provide a priori positions for scan matching, and
then the target positions are solved iteratively using the scan matching method and the
constructed nonlinear least squares function. Currently, the more commonly used scan
matching methods are ICP and scan-to-submap in Correlative Scan Matching (CSM).

3. Analysis of the motion process of mobile robots.

3.1. Mobile robot positional projection. Positioning is a method used to express the
position and attitude of a mobile robot. Since the object of this paper is an indoor planar
mobile robot, its position in the z-axis direction generally does not change, and its attitude
only exists in the angle of rotation around the z-axis. Therefore, in the world coordinate
system W , the position p of a planar mobile robot can be expressed as (x, y, θ), where x, y
represent the absolute position coordinates of the robot in the world coordinate system,
and θ represents the robot’s position in the world coordinate system, i.e., the angle of
rotation around the z-axis [23, 24]. The robot’s coordinate system follows the right-hand
rule. For the attitude angle θ, counterclockwise rotation is positive and clockwise rotation
is negative.

The position of the robot at a certain moment in the W system cannot be obtained
directly, but needs to be calculated based on the position of the previous moment, as
shown in Figure 1. Assuming that the coordinates xB of the vector x in the B system are
(dx, dy), I need to solve for the coordinates xW of the vector x in the W system.

xB =

[
dx
dy

]
= dx ·OX ′ + dy ·OY ′ (5)

OX ′ =

[
cos θ
sin θ

]
(6)

OY ′ =

[
− sin θ
cos θ

]
(7)
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Figure 1. The robot’s position at different moments in time.

It can be shown that the coordinate expression of the vector x in the W system is:

xW = dx

[
cos θ
sin θ

]
+ dy

[
− sin θ
cos θ

]
(8)

3.2. Two-wheel differential kinematic model. The kinematic chassis control for the
ROS mobile robot used in this paper is an Ackermann structure, as shown in Figure 2.
The Ackermann structure is well known for its simple and efficient steering system, which
allows the robot to maintain pure rolling contact between the wheels and the ground
during cornering, thus reducing friction and improving manoeuvrability [25, 26]. In this
configuration, the two rear wheels are driven by motors with rotational feedback from
encoders for precise speed and direction control. The two front wheels, on the other hand,
are controlled by servos and are responsible for steering the robot. This design allows the
robot to steer flexibly within a small turning radius, which is ideal for navigating in narrow
or crowded spaces.

Let the number of light-transmitting areas possessed by the code disc be k, and the
number of pulses generated by the photoelectric encoder per unit time be n, then the
linear velocity of the wheel v and the distance ∆s travelled per unit time are:

v = ∆s =
2πrcn

k
(9)

Based on the above analysis, the linear velocities vR and vL of the right and left rear
wheels can be obtained. The radii of the rear wheels, rR and rL, can be obtained directly,
so the angular velocities of the rear wheels can also be obtained, and are expressed as wR

and wL, respectively. The distance of the wheels from the centre of the chassis, d, and the
distance between the wheels, b, can also be obtained directly. The relationship between b
and d is as follows:

b = 2 · d (10)
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Figure 2. Ackermann steering mechanism.

Since the rotation of the Ackermann structure is in circular motion around a centre,
the magnitude of the angular velocity w can be obtained [27, 28] as follows:

w = wr = wl (11)

where wr, wl are the angular velocities of the right and left rear wheels relative to the
centre of the arc.

According to the velocity relation we can get as follows:

wr = wl =
vL

r − d
=

vR
r + d

(12)[
v
w

]
=

[
rL
2

rR
2

− rL
b

rR
b

] [
wL

wR

]
(13)

3.3. Rotational representation of mobile robots. In the positional projection of
mobile robots, rotational representations are used to describe the orientation of the robot
with respect to some reference coordinate system. Rotation can be expressed through a
variety of mathematical tools, including rotation matrices, Euler angles, and quaternions.
These representations play a crucial role in SLAM systems because they are able to
accurately describe the robot’s motion in space.

A rotation matrix is a mathematical tool for describing the rotation of a rigid body in
three-dimensional space [29]. For a mobile robot on a two-dimensional plane, the rotation
matrix can be reduced to a two-dimensional matrix representing the rotation around the
Z-axis. A 2D rotation matrix R can be represented by the angle θ.

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(14)

The main advantage of rotated matrices is their simplicity and ease of performing
matrix multiplication operations, which makes them very useful in robot kinematics and
SLAM.

Euler angles are another way of describing rotation, which describes the rotation of an
object relative to a fixed coordinate system through three angles. These three angles are
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usually expressed as rotation about the X-axis, rotation about the Y -axis and rotation
about the Z-axis. However, Euler angles suffer from gimbal deadlock, which may limit
their use in some cases.

A quaternion is an extended complex number that provides a rotational representation
that avoids the gimbal deadlock problem. A quaternion consists of one real part and three
imaginary parts and can be expressed as follows:

q = w + xi+ yj + zk (15)

where w is the real part of the quaternion and x, y, z are the imaginary parts, which
satisfy specific rules for multiplying quaternions. Quaternions are more compact than
Euler angles in representing rotations and have advantages in interpolation and avoiding
gimbal deadlock.

In SLAM systems, the choice of rotational representation is crucial for the performance
and stability of this algorithm. Rotation matrices are widely used due to their simplicity
and ease of manipulation, whereas quaternions are more appropriate in applications where
high accuracy is required and gimbal deadlock is avoided.

4. Improvement of front-end scanning matching algorithm.

4.1. Doppler velocity based FMCW point cloud segmentation. Traditional Li-
DAR recognition of dynamic objects usually requires joint two to three frames of timing
information to judge, while FMCW LiDAR can not only measure the 3D position in-
formation of the point cloud, but also capture the Doppler velocity information of the
point cloud. Therefore, this paper proposes a Doppler velocity-based FMCW point cloud
segmentation method, which can simultaneously measure the distance and velocity of a
target in a dynamic scene to improve the accuracy and efficiency of point cloud data
processing. The proposed method mainly utilises Doppler velocity information to distin-
guish between stationary and moving objects, thus improving the robustness of the SLAM
system in the environment.

Firstly, the raw point cloud data are denoised and filtered to eliminate outliers and
invalid measurements. Using the frequency modulation characteristics of the FMCW
LiDAR, the Doppler velocity information of the reflected objects is extracted by frequency
analysis of the received signals. Let the point cloud set P have n data points in the current

LiDAR coordinate system pi =
[
xi, yi, zi, vi

]T
. Using the measured Doppler shift fd, the

radial velocity vr,i of each point pi can be estimated.

vr,j =
λ0fd,j
2

(16)

To achieve velocity clustering, points with similar radial velocities are gathered into the
same cluster. We use the density-based spatial clustering algorithm DBSCAN, where the
distance metric takes into account the velocity differences of the points:

dist(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 + α(vr,j − vr,j)2 (17)

where α is the weighting coefficient for speed differences.
Since static and dynamic objects have different Doppler characteristics, we can further

segment the point cloud based on the Doppler characteristics. We can set a threshold
value vth. For each point in the point cloud, the point cloud is segmented into stationary
and moving point clouds based on the comparison of its Doppler velocity vi with the
preset threshold value vth. Clusters with velocities close to 0 are identified as stationary
objects and a stationary object point cloud Ps is constructed.
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Ps = pi | vr,j < vth (18)

Clusters with significantly non-zero velocities are identified as moving objects and a
moving object point cloud Pm is constructed.

Pm = pi | vr,j ≥ vth (19)

The key innovation of this algorithm is the use of radial velocity measurements pro-
vided by the FMCW LiDAR to cluster the point cloud by velocity, enabling more precise
separation of stationary and moving objects in complex environments.

4.2. False matching rejection of feature points based on GMMSC algorithm.
When performing LiDAR scanning matching, the presence of measurement noise, occlu-
sion and dynamic objects can lead to mis-matches during the matching process. These
mis-matches can seriously affect the accuracy of odometer position estimation. To solve
this problem, we propose a feature point mismatch rejection method based on the GMMSC
algorithm.

In traditional ICP algorithms, the Euclidean distance is usually used as a data term
and the measurement noise is assumed to obey a Gaussian distribution. However, in real
scenarios, due to the presence of interfering factors such as occlusions, dynamic objects,
etc., the noise distribution may take the form of heavy tails or multiple peaks, which
do not conform to the assumption of a single Gaussian distribution. The GMMSC algo-
rithm improves the capability of mis-match rejection by using Gaussian Mixture Models
(GMMs) to better fit the noise distribution.

Firstly, feature point sets P and Q of the current frame and the reference frame are
extracted using feature descriptors with rotational invariance (e.g., FPFH, SHOT, etc.).
Initial coarse matching is performed after feature extraction is completed. Coarse match-
ing is performed on the feature point sets P and Q to obtain an initial set of matched
point pairs M .

Then, a GMM is fitted to the Euclidean distance di of the matched point pairs to obtain
the probability density function.

p(d | θ) =
K∑
k=1

πkN
(
d | µk, σ

2
k

)
(20)

where θ = πk, µk, σk is a GMM parameter that can be estimated by the Expected
Maximum Algorithm (EM).

In order to achieve false match rejection, this paper uses a GMM-based probability
density function to compute the probability weight of each matched point pair.

wi =
πkN (di | µk, σ

2
k)∑K

j=1 πjN
(
di | µj, σ2

j

) (21)

For matching point pairs whose weight wi is less than a certain threshold wth, they are
excluded from the matching set M and treated as mismatches.

Compared with the traditional method based on a single Gaussian distribution, the
GMMSC algorithm is more robust and is able to effectively reject false matches introduced
by noise, occlusion and dynamic objects, thus improving the accuracy and stability of the
LiDAR scan matching. The remaining set of matched point pairs will be subsequently
used to estimate the positional transformation of the current frame with respect to the
reference frame using the ICP algorithm.
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4.3. Robust ICP-based position estimation. After the above steps of point cloud
segmentation and feature point mismatch rejection, we obtain a set of high-quality matched
point pairs. Next, using these matched point pairs, we can use the iterative closest point
algorithm (ICP) to accurately estimate the positional changes of the mobile robot. Com-
pared with the traditional ICP, this paper proposes a novel position estimation algorithm
based on ICP, and the main innovations are the introduction of false match rejection and
robust kernel function, which improves the stability and accuracy in complex environ-
ments.

The goal of the ICP algorithm is to find a rigid body transformation that aligns the
point cloud of the current frame as well as possible with the point cloud of the reference
frame. The transformation usually consists of a rotation R and a translation t. We define
the following energy function to measure the distance between the transformed point
cloud and the reference point cloud.

E(R, t) =
∑

(pi,qj)∈M

wijρ(||Rpi + t− qj||2) (22)

where M is the set of matched point pairs, wij is the matching weights computed in
Section 4.2, and ρ(x) is the robust kernel function (Huber kernel) used to suppress the
effect of outliers.

By minimising the above energy function, we can solve for the optimal transformation
T ∗.

T ∗ = argmin
R,t

E(R, t) (23)

Since the energy function is nonlinear, we use an iterative algorithm to solve it, and
gradually converge the current frame to the reference frame by solving the incremental
transformation through linearised approximation in each iteration. The specific steps are
as follows.

1) Calculate the centre of mass p̄ and q̄ of the current set of matched point pairs.
2) Construct initial values of the rotation matrix R0 and the translation vector t0 such

that R0pi + t0 is aligned with the centre of mass of q.
3) For each point pair (pi, qi), compute the error vector.

ei = qi − (R0pi + t0) (24)

4) Stack the error vectors to construct the Jacobi matrix J .

J =


∂e1
∂ϕ

∂e1
∂t

...
...

∂en
∂ϕ

∂en
∂t

 (25)

5) Calculate the incremental rotation ∆ϕ and translation ∆t.[
∆ϕ
∆t

]
= H−1

n∑
i=1

wiei (26)

where H = JTWJ and W is the diagonal weight matrix.
6) Update the transformation: R← R(I +∆ϕ)R0, t← t+∆t.
7) Repeat steps 3-6 until convergence or the maximum number of iterations is reached.
With the above ICP iterations, we then obtain the optimal rigid-body transformation

T ∗ of the current frame with respect to the reference frame, i.e., the change in the position
of the mobile robot.
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5. Results and analyses of indoor scene experiments.

5.1. Map construction. In order to verify the effectiveness of the proposed improved
front-end scanning matching algorithm, a simulated indoor corridor environment is con-
structed in order to experimentally analyse its map building effect. The environment
consists of several rooms and corridors as shown in Figure 3. The modelling software
(Gazebo) was used to create the corridor models required for the experiments. The
advantage of this simulated environment is the complete control of the environmental
parameters and the Ground Truth of the motion trajectory, which allows quantitative
analysis of the performance of this algorithm.

1

2 4 5

9

8

3 6 7

Figure 3. Indoor simulation environment

The above environment simulation map is labelled with 9 features that are more impor-
tant in the scene, and the real length of the features is obtained through measurements.
We verify whether the improved algorithm can improve the accuracy of map building by
comparing some details of the map generated before and after the improvement of this
algorithm and the accuracy of these 9 features in the map. In building the simulation
environment, we set the following parameters for the FMCW LiDAR to simulate the
actual sensor used, as shown in Table 1. By simulating a LiDAR with Doppler measure-
ment capability, we can evaluate the effectiveness of the proposed Doppler velocity-based
point cloud segmentation algorithm in real scenarios. In the simulated environment, the
LiDAR will be mounted on top of a mobile robot and continuously acquire point cloud
data during the robot’s motion. These data will be fed into our improved scan-matching
algorithm for processing to estimate the robot’s positional changes and construct a map
of the environment.

Table 1. Experimental datasets information

Parametric Numerical value
Wavelength 1550 nm
Scanning angle range 270°
Angular resolution 0.25°
Maximum range 30 m
Distance resolution 2 cm
Ranging error Gaussian noise (µ = 0, σ = 2 cm)
Doppler velocity resolution 0.1 m/s
Modulation bandwidth 2 GHz
Sampling rate 10 Hz

5.2. Map building accuracy analysis. The collected point cloud data is passed into
our improved front-end scanning matching algorithm for processing, which includes the
steps of point cloud segmentation, mismatch rejection, and position estimation. The
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estimated robot position is compared with the reference trajectory to evaluate this al-
gorithm’s localisation accuracy and map building quality in this simulated environment.
In order to more accurately compare the map building accuracy of this algorithm before
and after the improvement, the relative and absolute errors of the nine feature lengths
are calculated, as shown in Table 2 and Table 3, respectively.

Table 2. Absolute and relative errors of feature lengths before improvement

Feature number True value/mm Measured value/mm Absolute error/mm Relative error/%
1 2344 2409 65 2.7730
2 6775 7438 663 9.7860
3 6686 7407 721 10.7837
4 1064 1092 28 2.6316
5 8094 7369 725 8.9573
6 1029 1012 17 1.6521
7 7901 8837 936 11.8466
8 26681 25967 714 2.6761
9 25534 24679 855 3.3485

Average - - - 6.0505

Table 3. Absolute and Relative Errors of Improved Feature Lengths

Feature number True value/mm Measured value/mm Absolute error/mm Relative error/%
1 2344 2366 22 0.9386
2 6775 7081 306 4.5166
3 6686 7115 429 6.4164
4 1064 1039 25 2.3496
5 8094 8607 513 6.3380
6 1029 1047 18 1.7493
7 7901 8411 510 6.4549
8 26681 26266 415 1.5554
9 25534 25021 513 2.0091

Average - - - 3.5919

According to Tables 2 and 3, it can be seen that the improved algorithm is higher
than the pre-improved algorithm in terms of accuracy for all nine features. The average
relative error of the improved algorithm is reduced by 40.6% compared to the pre-improved
algorithm. The errors of features 2, 3, 5, and 7 are more obvious when building the map,
which is related to the fact that the environment structure at features 2, 3, 5, and 7 is
relatively simple. The single environment structure is more likely to cause the scanning
matching to have a large error, which leads to the most prominent relative error in these
four areas before the improvement, while the improved algorithm can effectively alleviate
this problem. At feature 4 and 6, the relative errors are not obvious before and after the
improvement because the environmental structure is relatively more complex. Since the
improvement of this algorithm does not involve the vertical orientation of the corridor, the
relative error at feature 1 does not change significantly. The relative errors of 9 features
before and after improvement are shown in Figure 4.

6. Conclusion. In this paper, an improved front-end scanning matching algorithm based
on FMCW LiDAR is proposed for the autonomous positioning and mapping of mobile
robots in complex environments. The traditional scanning matching algorithm based
on LiDAR is difficult to effectively distinguish between stationary objects and moving
objects, and dynamic objects will lead to positioning offset and map distortion. In this
paper, by using the Doppler velocity measurement of FMCW LiDAR, the detection and
segmentation of moving objects are achieved, thus avoiding the influence of dynamic
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Figure 4. Comparison of relative errors for 9 features before and after improve-
ment

interference on the position estimation and map construction. Due to the measurement
noise, occlusion and other factors, the scanning matching process often produces some
mismatched pairs of points, and these mismatches will seriously reduce the accuracy and
stability of the position estimation. In this paper, the GMMSC algorithm is introduced to
eliminate the mismatched points in a more robust way and improve the alignment quality.
We comprehensively evaluate the proposed algorithm in both simulated and real scenarios.
The experimental results show that our algorithm significantly improves the autonomous
navigation and mapping capabilities of mobile robots in complex environments compared
with the existing techniques, especially in dynamic object detection, mis-match rejection
and robustness. In addition, this algorithm has a broad application prospect because of
its strong generalisation ability, which does not depend on specific scene a priori. In the
future, we plan to fuse this algorithm with information from other sensory sensors (e.g.,
vision cameras) to further improve the robustness and accuracy of the system.
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